AD-AL00 796 AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OH SCHOO~=ETC F/6 9/2
PRELIMINARY DESIGN AND IMPLEMENTATION OF AN ADA PSEUDO=MACHINE, (U)
MAR 81 A R GARLINGTON

UNCLASSIFIED AFIT/GCS/MA/81M-1

NL




ADA100796

DTIC
UNITED STATES AIR FORCE

ELECTE
JuL 1 1981
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY
' Wright-Patterson Air Force Base,Ohio

DISTRIBUTION STATEMENT A

Rpproved for public releass;
Distr lbuuon Unl mt d

D ;

e -t [P~

it o




AFIT/GCS/MA/81M-1

Accession For

| NTIS GRA&I
DTIC TAB

Justification____

By __.

Unannounced I

)

Dlutrlbutlon/

Availability Codes

Avail

ong/or

)

D

ist

Special

(C

~ -

‘)

Approved for public release;

‘ PRELIMINARY DESIGN AND ‘IMPLEMENTATION

OF AN ADA PSEUDO:?ACHINE.

-
-

THESIS

;’_AEI:/GCS/MA/BIM-1/ éAlan R. _/carlm,,con |

@j USAF

//J’

K:?ii JZ{ /,_./(u / <. \aaﬂ .

distribution unlimited.

A e il




AFIT/GCS/MA/81M-1

PRELIMINARY DESIGN AND IMPLEMENTATION
OF AN ADA PSEUDO-MACHINE

THESIS
Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
in Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Computer Engineering

by
Alan R. Garlington
Capt, USAF
Graduate Computer Science

March 81

Approved for public release; distribution unlimited.

PRIV YOV

PR



PREFACE

Preface

The Department of Defense funded the development of the
Ada programming language in an effort to significantly
reduce costs for programmin, embedded computer systems. As
the language evolved, it became apparent that its power
would be wuseful in a wide range of other pro,ramming
applications as well. Since the Department of Defense has a
large number and wide variety of small computers, all of
which could benefit preatly from Ada, it seemed that a
portable compiler could be extremely valuable. One proven
implementation of a portable high-level language compiler is
UCSD PASCAL which pgenerates code for a hypothetical
processor called a pseudo-machine. To run this code on an
actual computer requires a software pro,ram to simulate the
pseudo-machine. This approach allowed PASCAL to be
available on many different small computers. Investigation
of the same techniques used in this implementation would
possibly be the key to providing a portable Ada compiler.
Initiating such research at AFIT would provide a test bed
for Jdevelopment of this concept and provide a basis for
further research in Ada and its programming environmenct.
This seemed like a good prospect for a thesis topic, since

botnh AFIT and the Air Force could benefit.

The preliminary reference manual for Ada was released

about the same time I started my £first compiler-theory

—ad

T Y

e —




PREFACE

class., As time passed, my interest in both Ada and compiler
theory grew, as did wmy desire to do a thesis topic thnat
would combine both subjects. When Capt Roie Black and iaj
Alan Ross, AFIT professors, voiced interest in the design of
an Ada pseudo-machine, I felt that this would be the perfect
topic for me. Designing the pseudo-machine would require
integrating techniques from several areas in che
computer-science field, Compiler theory, data structures
and computer architecture are all intertwined, offering a

potentially-rewarding, learning experience.

My initial stab at this topic was to design the
pseudo-machine and then build a test compiler to exercise
the design. This uncoupled development  of the

pseudo-machine and the compiler turned out to be incorrect.

The process of defining a pseudo-machine for a language
is, in fact, closely coupled to the development of a
compiler for that language. Niklaus Wircth, designer of
PASCAL, stated that the purpose of a pseudo~machine was to
"keep the description of the compiler reasonably simple and
free from extraneous considerations of peculiar properties
of a real, existing processor (Ref 14:331)"., If this is the
case, defining the Ada pseudo-machine without developing the
compiler would be difficult, since the success of the

pseudo-machine is measured by how well the machine supports

T




PREFACE

the compiler.

Thus, the project was modified tu permit the parallel’
development of the compiler with the definition of the
pseudo-machine, and the project's scope was reduced. The
new zoal became an 1integer-only implemencation which
incorporated some of Ada's more interesting features, for
example, packages and tasks, Additional constructs were
studied based on their estimated impact on the

pseudo-machine's architecture.

Throushout the project's development, several people
sacrificed their time ¢to offer council, suggestions, and
materials. The time they invested immeasurably improved the
project's overall quality. Thanks to Capt Roie R. Black,
advisor, who proposed the topic and helped ‘limit its scope.
His interest, encouragement and sugzestions were invaluable.
Thanks to Major Dan Burton, currently assigned to the air
Force Avionics Lab, who sponsored the project and allowed ne
to use the lab's excellent computer facilities. Thanks also
to my thegis-ccmmittee members, Lt Col Jim Rutledge and Maj
Alan Ross. Lt Col Rutledge's indepth knowledge of Ada proved
very valuable. He sacrificed numerous hours listening and
teaching, and he also composed several test programs to help
debuy the project. Major Ross served as a thoughtful critic

who, 1in concert with Capt Black, identified the Ada

iv




| PREFACE

pseudo-machine as a possible thesis topic. Finally, I'd
like to thank my wife whose patience with a full-time
| student and 4 baby boy (born during my first quarter at

AFIT), was nothing short of miraculous.




TABLE OF CONTZNTS

'
Tabtle of Contents ;

-—

1. Introduction

1.1 sackground ~- Ada's roots i
1.1.1 The problem that spawned a language 1
1.1.2 A solution in commonality 2
1.1.3 ada's broadening appeal 3
1.1.4 Ada and the small computer 7
1.1.5 leeded =- a portable compiler 3
1.1.5.1 The pseudo-code compiler 9
1.1.5.2 Advantages/Jdisadvantages 10
1.2 Project overview 11
2, Project Description 13 '
2.1 Approach 13 s
2.2 Desizn ccnsiderations 14 L
2.2.1 Recursive subpro,rams 14 !
2.2.2 Tasking 16
2.2.2.1 Ada's tasking facility 17
2,2.2.2 Run-time reguirements 21
2.3 Pseudo-machine architecture 23 F
2.3.1 enmory 23 g
2.3.1.1 Program memory 23 :
2.3.1.2 stack memory 29 | 1
2.3.2 Stack processors 52 N
2.4 Pseudo-machine instruction set 35 ‘
2.4.1 zelational operators 36 L

2.4.2 Integer (single word) arithmetic operations 37 - 1

2.4,2.1 Single word loads and stores 37 i

2.4.2.2 Arithmetic operators 38 \
2.4.3 Taskinyg operators 39 |

2.4.3.1 ACTIVATE 39

2.4.3.2 CALLENTRY 41 :

2.4.3.3 ACCEPT 2

2.,4.3.4 RELEASE 2

2.4.3.5 TERMINATE 43

2.4,3.6 ENTILOAD 43 ;

2.6.,3.7 ENTISTORE 44 |
2.4.4 1/0 Operations 44 -

2.4.4.1 SPUT 44

2.4.4,2 IPUT 45 ]

2.4.4.3 LGET 45 '
2.4.5 Miscellaneous Instructions 45

2.4.5.1 CALL 45

2.4.5.2 PARAJSHIFT 46

2.4.5.3 RETURN 46




TABLEZ OF CONTENTS

4 JuiP
5 JuPF, J4PT
6 INCT

.
r

?T(D v n

oround -~ Compilation

1) parsing automacton

2.1 Construction

2.2 Parser structure

2 3 Parser operation
antic routines

Scanner

semantic stacks
Sample semantic routine
table and visibilicy
anvircnment stack
Stacking rules
Symbol-table routines
Visibility example

Boo-f\nt—‘aoo

=g .
L\#‘L\J-\O’wwbvw

2.5.4

e o o C o o o

SWwho=—= Lo -

UViin n Ui kﬁU‘an(" (G, RO NI i VIR o S A

3. Recommendations

3.1 Improvements to the pseudo-macihine
3 1.1 Kun-time space allocation
System gueues
Stack-rrame control dacta
Implemencing exceptions
Implementing dynamic variables
Enumeration 1/0
bata protection
3.2 Improvements to the compiler
3.2.1 Towards a finished product
3.2.2 For use as a tool

bJUbJUJbJLM
e o ¢ o+ o »
o »

— b b —a h b
.
\IO\LI‘-‘-—\D)N

BI BLIOGRAPHY

1 APPENDICES

I. DOD Commonality study
I1. LR(1) Parsing automaton
I1I. User's guide |

IV. Source listing

VITA




LIST OF FIGURES

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure

Figure
Figure

List of Figures

2-1: Run-Time Space Allocation Example

2-2: Procedure Activation kecord

2-3: Task Declaration

2-4: Accept sStatement

2-5: Parent Witn Nested Task
2«6: JSystem Architecture

2-7: Correspondence of Registers and Blocks
2-8: sSample Task Frame

2-9: Trutn Table for cthe 3inary, Relational

Operators

2-10: Trutih Table for the Unary-Operator ZnNOT
2-11: Parser=-Structure Chart

2-12 Algorichm for codule Parse

2-13 Stacking Rules

2-14; Example Program for Visibiliey
Demonstration

2-15: Visibility Kules Demonstration

3-1: Tables for the LR()) Parsing Automaton
3-2: Result of the 'shift, T1' dove

3-3: Intermediate result orf tne 'rReduce, 3'

vlove
3-4: Final result of 'Reduce,3' rove
3-5 Acceptance of the String "JOHN =ZATS Bkkan"

viii

44
&



ABSTRACT

Abstract

This project iavolved defining an Ada pseudo-machine
and developing an Ada to pseudo-code test translator. The
translator's front-end incorporates a table-driven parser
that can parse the entire proposed-standard Ada language.
The translator's semantic routines allow 1integer data
objects, several control structures, procedures, functions,
packages and tasks, These routines generate pseudo-code
that is executed by an interpreter program included in the
translator. The interpreter constitutes a complete
description of the pseudo-machine  whose architecture
consists of multiple, stack-oriented processors that access
a common memory. Interesting features of the project
include the hash-coded symbol table that supports Ada's
visibility rules and the pseudo-machine architecture that

supports Ada's tasking.

ix




INTRODUCTION

1. Introduction

Chapter one begins with background information on the
origin of the computer programming language Ada and with a
summary of the features which have resulted in its rapid
growth 1in popularity. The chapter concludes with a
description of how Ada can be implemented on a micro or mini
computer and with an introductory description of the thesis

project.

1.1 Background -- Ada's roots

Increasing sofcware costs have forced the Department of
Defense to search for ©budget reducing strategies. An
outgrowth of this search was the development of a new
computer language with a soon to be familiar name, Ada. 1Its
introduction met with both opposition and enthusiasm, but
currently, most of the opposition 1is fading and Ada is

experiencing a broadening appeal.

1.1.1 The problem that spawned a language

Every year, more and more money is spent on computer
systems, despite precipitous drops in computer hardware
costs. These falling hardware costs have been matched by an
equivalent increase in software costs, and now, software
looms at the forefront as the major development expense.
The Department of Defeuse is not immune to this problem, and

it too must face the problem of rising expenditures.




INTRODUCTION

Within DOD, the major software expense 1is for
programming embedded computer systems, and more than 50% of
the software budget goes toward satisfying the demand for
such software (Ref 4:6). Why 1is programming embedded
systems so costly? A preliminary study showed that one of
the problems has been the plethora of special-purpose
languages and systems wused to program them. The study
showed that a common language could save in excess of 1
billion dollars a year (Ref 5). The data on which cthis

estimate is based can be found in appendix I.

1.1.2 A solution in commonality

To correct this problem, DOD pursued the zoal of a
single, high-level computer language appropriate for
programming embedded systems and established the High Order
Language Commonality Program in 1975 to railroad the project
(Ref 3:1i). The program's directors «compiled a set of
requirements for the proposed language by circulating a
request for language requirements throughout the military,
civilian and industrial communities of the U.S. and, also,
throughout European and NATO countries. The submitted
requirements were integrated, refined and then returned to
the respondents for approval. After saveral such cycles,
the resulting set of requirements was deemed necessary and

sufficient for all DOD embedded computer applications.




INTRODUCTION

Several existing high-order languages were examined to
see if one satisfied the complete set of requirements, but
none did. Therefore, four contractors were funded to
develop a language which  would meet the required
specifications, After this four-contractor
competitive-design effort, a single language emerged and was
named Ada. Currently, Ada stands at a major transition
point in its development, as emphasis shifts from the design

of the language to its introduction and use.

1.17.3 Ada's broadening appeal

The major goal of Ada's design was to reduce costs for
embedded-computer software. While pursuing this goal, DOD
specified requirements for a working environment for the
language. These requirements are delineated in the
document: ""STONEMAN, Requirements for Ada Programming
Support Environments", Feb 1980. The stated purpose of the
programming=-support environment is to "support the
development and maintenance of Ada applications software
throughout its 1life <c¢ycle, with particular emphasis on
software for embedded applications" (Ref 3:1). To meet this
goal, a host/target approach to software construction 1is
adopted. This approach entails developing programs for an
embedded target computer on a host computer ‘that offers
extensive support facilities (Ref 3:8). The document goes

on to specify what support facilities the host system must




INTRODUCTION

have.

While this standard environment will do much to make
Ada a powerful and popular tool for programming embedded
systems, the language has features that have opened another,
perhaps-larger, market. This market is among system and
applications programmers who develop software for use on the

host processor.

Ada has several features that have stimulated this
interest. Some of the most interesting of these will be
discussed briefly. These include packages, tasks, separate
compilation and the promise of universality, More detailed
information can be found in the Ada reference manual (Ref

2).

Packages: Packages are a mechanism for isolating
logically related structures in the program text whether
they are subprograms, data types, variables, nested
packages or a combination of these. This mechanism clearly
distinguishes information that is accessible only within the
package from that which is accessible to the rest of the
program. Information accessible only within the package is
considered 'hidden' and cannot be altered or even accessed
outside the package. This provides the programmer with a
powerful tool for creating abstract data types whose

implementation details are completely hidden from the user,

4

i
|
|

4
3




INTRODUCTION

for writing modular programs with enforced module boundaries
and for writing programs that can be more ecasily verified

(Refs 2:7-1 - 7-11; 9:8-1).

Tasks: Tasks are Ada's construct for parallel

processing. A task is known to other tasxs in the program
by a set of names called entries. When o<ne task calls
another, one of these names must Je specified.

Synchronization of the two tasks is achieved when the called
task accepts the call of that nzmed entry. This mechanism
provides the programmer with a simple, but powerful, method
for specifying parallel activities that must communicate

(Ref 2:9-1 - 9-16).

Separate compilation: Ada supports separate

compilation as opposed to 1independent compilation. The
distinction between the two was first made by J.J. Horning
and is described in the preliminary reference manual. The

description is reproduced here for convenience.

Independent compilation has been achieved by most
assembly languages and also by languages such as
Fortran and PL/1. Compilation of individual modules
is performed independently in the sense that such
modules have no way of sharing knowledge of
properties defined in other modules.

Independent compilation is usually achieved with
a lower 1level of checks between units than is
possible within a single compilation unit. In
consequence, independent compilation came into
disrepute and was rejected by safety minded, early
typed language definitions such as Algcl 68 and




INTRUDUCTION

Pascal. Fast compilation of the complete program
was often advocated by promoters of these languages
as a safe alternative to independent compilation.
Fast compilation, hovever, has its 1limits, and it
fails to answer the needs of confidentiality and
libraries. :

Separate compilation, on the other hand,
reconciles type safety and the pragmatic reasons for
compiling in parts. It is based on the use of a

library file which contains a record of previous

compilations of the units which form a program (Ref

9:10-1).

In summary, independent compilation provides little or
no checking for compatability between individually compiled
modules. On the other hand, separate compilation provides

the same 1level of checking between individually compiled

modules as they would get if they were compiled together.

Universality: Ada holds the promise of being a

universally accepted standard language. The list of
benefits that could be derived from such a language would be
very long, and one can only hope that this will indeed come
to pass (Ref 4). DOD's mandate that Ada will be '"the"
language for programming embedded systems is the foot in the
door for such a possibility. Hopefully, this door will open
completely as DOD and commercial interests cash in on the

language's powerful features.

Collectively, these features support the concept of
standard software components first espoused by M.D. MclIlroy

in 1969, and enthusiastically supported by Jean D. Ichbiah

- e r—————




INTRODUCTION

at the ACM  SIGPLAN conference on Ada in 1980.
Over-simplifying, a software component refers to a
functional module that has been coded and verified. Such a
component could be "manufactured" by a specialty company and
then be compiled with other such components into software
cataloygs. On the ‘'consumer's' side, software developers
could refer to these catalogs and choose those components
needed for their project. Once delivered, the components
could be "wired" together to create the finished system.
Since the functional modules are already assembled, tested
and, possibly, guaranteed by the manufacturer, less time
should be mnecessary for system development and testing.
Ada's features have sparked the hope that standard

components may soon be a reality.

1.1.4 Ada and the small computer

A large, potential market for software components, and
thus for Ada, exists among micro and mini computer users.
However, these users must have Ada running on their machines
in order to wuse these components. Since small machines
generally cannot support an extensive environment, they must
have a specially designed Ada language environment tailored

to their capabilities.

Hosting Ada on small machines is a topic reminiscent of

the UCSD PASCAL effort where PASCAL, a language seemingly




INTRUOUCTION

too coaplex to host on a micro, was quite successfully
implemented. The excellent results achieved by the UCSD
PASCAL project served to motivate this investigation of the
same techniques as applied to Ada. The project reported in
this paper specifically deals with the concurrent
deveiopment of an Ada pseudo-machine and an Ada to
pseudlc-code translator, with emphasis on the
pseudvo-machine's architecture. Some of the results of the
project, namely the pseudo-machine definition and the
semantic routines from the translator, could serve as a good
starcing point for the implementation of an Ada environment
on a micro~computer host. The following section describes
the pseudo-machine approach and then introduca2s the project

more fully.

1.1.5 Needed -~ a portable compiler

The most important part of this micro/mini Ada
environment is the compiler. Since there is a wvariety of
processors in the micro and mini class, the compiler program
should be written incorporating techniques that enhance its
portability. A technique that achieves this, with excellent
results, is the pseudo-code compiler. In this technique,
the compiler generates code (pseudo-code) for a hypothetical
processor. This processor's instruction set is specifically
designed to make the compilation task easier and more

straight-forward than attempting to generate code for an

.........ﬂ-.-._v_q_.-
g

4
S




e s

INTRODUCTION

actual processor. The pseudo-code is then executed by an
interpreter program which runs on the actual processor. The
steps necessary to develop such a compiler are briefly

outlined below.

1.1.5.1 The pseudo-code compiler

The first step toward developing a pseudo~code compiler
is to write the Ada to pseudo-code compiler program in a
suitable language on a host processor. The resulting
program, called a cross compiler, accepts Ada source text as
input and generates pseudo-code for the hypothetical
processor as output. Now, a production-quality compiler is
written in Ada. This program is input to the cross compiler
and translated to pseudo-code. The output from this step is
pseudo-code for the production compiler. Now, all that is
needed to execute the compiler program is a pseudo-machine.
Since no pseudo-machines actually exist yet, a simulator
must be created. This may be done by writing a program that
accepts the pseudo-code as input and that accomplishes the
necessary actions. Such a program is sometimes called an
interpreter. With this approach, all that needs to be done
to install the Ada compiler on a new processor is to write a

relatively-simple, pseudo-code, interpreter program to run

on the processor.




INTRODUCTION

1.1.5.2 Advantages/disadvantages

Since installing the compiler on another processor is
limited to writing a relatively-simple program, the goal of
easy portability is attained. All system software, e.z. the
editor, debugger, -etc., should also be written in Ada and
compiled to pseudo-code, thus attaining the same portability

as the compiler.

Of course, running the interpreter program decreases
execution speed as compared to executing native machine
code. The trade off is speed for portability. However, the
popularity of current PASCAL pseudo-code implementations is
a testimony that, for most purposes, this degredation in
performance 1is acceptable to a wide market of wusers.
However, should performance be degraded to unacceptable
levels, speed can be improved by post processing the code

or, even better, by creating the hypothetical processor.

Post processing: Pseudo-code generated by the compiler

can be post processed to produce code for the target
machine. An optimizing, pseudo-code to target-machine
translator would eliminate the run-time, interpretation

penalty; thus increasing the program's execution speed.

Building the hypothetical processor: Building the

hypothetical processor eliminates any need for post

processing the pseudo-code to speed up execution.

10

siniunaiiaittota




INTRODUCTION

Pseudo-code generated by the compiler is native machine-code
for the hypothetical processor, and thus, no translation is
required. Western Digital Corporation used this technique
to build their PASCAL Micro-Engine by micro-programming an
LSI 11 chip set to emulate the UCSD PASCAL pseudo-machine.
The excellent result is a premium, hizh-speed, UCSD-PASCAL

implementation that executes on a micro/mini computer.

Now that some background information on pseudo-code
compiling has been covered, the thesis project will be
described. This project, while not directly involved with
building the finished compiler for an Ada pseudo-code

implementation, has laid the foundation for such an effort.

1. Project overview

The project consisted of the concurrent development of
an Ada to pseudo-code translator and an Ada pseudo-machine.
First, a parser for the language was built wusing Lawrence
Livermore Laboratory's automatic parser generator and
Intermetric Inc.'s LR(1) Ada grammar (Refs 12, 13). Then,
language constructs were investigated beginning with
packages. Packages had no impact on the runtime
architecture of the pseudo-machine, but profoundly affected
the compiler's symtol table and symbol-table-access
routines. Separate compilation and its possible impact on

the structure of the symbol table was not investigated.

(R




I'-..-.-u-l--u-----u---unullll!ll-ll'l-luluuwwnw-n--.-."-nnu!-uV - -

INTRODUCTION

Next, expressions were implemented followed by procedures
and functions. These features delineated the basic
requirements for the pseudo-machine, and a stack processor
was selected to meet those requirements. Finally, tasks
were investigated. Tasks added several operators to the
pseudo-machine’'s instruction set and prompted a y
multi-processor architecture. The following chapter ;
describes each of the project's two parts: the :

pseudo-machine and the compiler.

e

12

VIR W

.




PROJECT DESCRIPTION

2. Project Description

This chapter begins by describing the approach to the
project and by discussing some of the design considerations
that prompted the resulting system architecture. Later
sections describe the pseudo-machine's architecture,
including its 1instruction set and describe the Ada to

pseudo-code compiler.

2.1 Approach

As mentioned before, the approach taken in this effort
was to develop an Ada compiler 1in parallel with the
pseudo-machine. Experience gained through this approach
showed that the compiler actually drove the design of the
machine. As each Ada construct was implemented 1in the
compiler, a set of run-time actions became necessary to
carry out the required semantics of the construct. This set
of actions, where feasible, was included as a single
instruction in the machine's instruction set. Where this
was not practical, combinations of previously defined
instructions were used to implement the construct. In this
way, the instruction set for the pseudo-machine grew

specially tailored to the needs of the Ada language.




PROJECT DESCRIPTION

2.2 Design considerations

This approach uncovered two constructs that had major
influences on cthe architecture of the machine. These
constructs included the requirement for subprograms to be
recursive and the run-time requirements imposed by the

tasking constructs.

2,2.1 Recursive subprograms

When a compiler analyzes a subprogram in preparation
for code generation, the only information available to it
concerning local variable and object space requirements is
the space required for a single activation of that
subprogram, Since subproygrams in Ada can be activated
recursively, the total number of times a procedure will be
called 1s not known wuntil run time. Since the compiler
cannot allocate variable and object space for an unknown
number of subprogram activations, a run-time allocation
scheme is required. This scheme must allocate memory space
for each variable or object declared in a subprogram before
executing any of that subprogram's code. The system used in

the pseudo-machine is described below.

Ada subprograms, like those in nther block-structured
languages, obey a last-called, first-completed calling
discipline. That is, the most recently called subprogram

must complete 1its execution before the caller resumes its

14




PROJECT DESCRIPTION

execution. Since space for wvariables and objects 1is
allocated just prior to the subprogram's execution and
deallocated immediately afterward, a stack can be used.
Consider the following example:
PROCEDURE MAIN IS
A : INTEGER;
BEGIN
A = 2

PUT_LINE (A);
END MAIN;

Figure 2-1: Run-Time Space Allocation Example

In this example, procedure 'MAIN' merely initializes
the local wvariable 'A', prints it and terminates. The
run-time actions necessary to accomplish this in the
pseudo-machine are:

1. Allocate stack space for the procedure's local
variable 'A'.
2. Allocate temporary storage for the constant 2.

3. Store this wvalue 1in the space allocated ¢to
variable 'A',

4., Print the value of variable 'A'.

5. Deallocate the procedure's stack space.

When stack space 1s 1initially allocated to the
procedure, as in step one, additional space is also
allocated to provide storage for control data used by the

run~time system. The number of words required for control

15

1

X




PROJECT DESCRIPTION

information is fixed and is allocated before the procedure's
local wvariable space. In this paper, the first word
allocated to a procedure is referred to as the base of the
procedure activation, and the control data is referred to as
stack-frame control data. The space allccated to
temporaries, as in step 2, is accessed strictly as a stack,
and the last word allocated for temporary storage is called
the 'top of stack' or 'T' for short. This will be discussed

more fully in a later section.

Collectively, the stack-frame control data, the
variable and object space, and the temporary workspace, is
called a procedure activation record or a stack frame. The
layout of the stack frame for a typical procedure activation
is illustrated in figure 2-2. Please note that the stack
grows downward here and in all 1illustrations that will

follow.

2.2.2 Tasking
Before discussing the run-time requirements levied by
Ada's tasking facilities, a brief introduction to them is

necessary.

16




o

PROJECT DESCRIPTION

PREVIOUS ACTIVATIONS

BASE
CONTROL DATA
LOCAL VARIABLES
EVALUATION STACK
(TEMPORARIES)
T

UNUSED STACK SPACE

Figure 2-2: Procedure Activation Record

2.2.2.1 Ada's tasking facility

Tasks are the Ada construct used to specify code that
executes in parallel with the parent procedure. These
parallel tasks may execute totally independently, or they
may synchronize occasionally to pass information. The
mechanism these tasks use to synchronize and pass data is

described in the following paragraphs.

A task that accepts calls from other tasks has a set of
pre-defined names that it can be called by. These names are
called entries, and their declaration looks the same as a
procedure declaration. Figure 2-3 contains the declaration

of a task named 'A' that includes 2 such entries.

Task 'A' can be called by other tasks with the entry

names 'A.Al1' or ‘'A.A2'. To call task 'A', the caller

17




- -

PROJECT DESCRIPTION

TASK A IS
ENTRY Al (A11 : IN INTEGER);
ENTRY A2 (A12 : OUT MY_KIND);
END A;

Figure 2-3: Task Declaration

executes a call to the desired entry. Actual parameters of

the call must match the declaration's parameters in number
and type as they must in a procedure call (excluding
parameters with default values). This entry call looks

identical a procedure call, and might appear as:

A.A2 (Z)

e e ey e — -

where 7 must be of type 'MY_KIND'. The called task accepts
such a call by executing an accept statement for the called
entry. Continuing the example, such an accept statement
might appear as:

ACCEPT A2 (A21 : OUT MY_KIND) DO

STATEMENTS
END A2;

Figure 2-« - Accept Statement

The region between 'DO' and 'END' in the figure 1is
g 8

called the accept body, and, in this region, the two tasks




PROJECT DESCRIPTION

are synchronized. During this rendezvous, the statements
comprising the accept body are executed while the calling
task is suspended at the point of call. After the
completion of the accept body, both tasks continue their
parallel execution. Now that the mechanism for
synchronizing parallel tasks has been described, the method

for passing data will be discussed.

Information may be passed between communicating tasks
in two ways; through entry parameters or through global
variables. The preferred way to pass information is by
referencing the entry parameters. In this technique, the
entry parameter acts like a local variable in the accept
body. Entry parameters, like procedure parameters, can have
a specified mode which can be 'IN', 'OUT' or 'IN OUT'.
Thus, information passes into the called task via an actual
parameter corresponding to an ‘IN' or 'IN OUT' formal
parameter, and passes out of the task via an actual
parameter corresponding to an 'OUT' or 'IN OUT' formal
parameter. This method 1is safe since the two tasks have
rendezvoused and are in direct communication with each
other., The other technique for passing information between
tasks is by accessing global wvariables. There are no
guarantees with this technique, and the programmer must
implement control constructs and safeguards. Let the user

beware!

19

S




» PROJECT DESCRIPTLUN

The chronology of the calling interaction between tasks

permits two possible scenarios (Ref 7:1). In the first
scenario, the calling-task's entry call precedes the
called-task's execution of an accept statement for that
entry. The second scenario 1is the opposite, where the

b
called task executes an accept statement for an entry and k

then the caller executes the entry call. The required
run-time actions for each scenario are briefly discussed

below.

Call precedes accept: If the caller executes an entry

call and finds the called task unable to accept the call, it

ke ound

enters 1itself in a wait queue associated with that entry.
Then it records the current value of its working registers
(its context) in its stack frame and releases its processor.
The scheduler then attempts to schedule the released

pProcessor.

Accept precedes call: The task owning the entry

executes an accept statement and finds there are no callers.

It then sets a flag notifying other communicating tasks that
it 1is waiting for a call to that entry, records its context 1
and releases its processor. The scheduler then attempts to

schedule the released processor.

This brief introduction to Ada's tasking facility will

now be followed by a description of the run-time operations

20




PROJECT DESCRIPTION

required to implement these constructs. If more information
on tasking 1s desired, see the Ada reference manual (Ref

2:9-1 - 9-16).

2.2.2.2 Run-time requirements

In the pseudo-machine, an Ada task executes as an
object within a subprogram's activation record. As a result
of ¢this, the stack space assigned to the parent must be
accessible to multiple processors. This is true because one
processor might require access to the variable/object space
allocated to the task object, while another processor might
require access to other areas of the parent's

variable/object space,

The stack space allocated to a task is formatted the
same as that of a procedure, except that the task has a
pre~established upper bound on the amount of space assigned
to it. This bound is determined by the compiler when the
program is compiled, but can be modified by a representation
specification for the task (Ref 2 : 13-3). ©Now, consider an
example showing the stackspace allocated to a task object

nested within its parent.

Notice that the nested task in figure 2-5 has the same
structure as the parent and is nested within the parent's
local variable space. Remember that the space allocated to

the nested task has defirite limits that are computed by the

21




PROJECT DESCRIPTION

PARENT. BASE
PARENT'S
CONTROL DATA
‘ »

TASK .BASE

CONTROL DATA

LOCAL VARIABLES

EVALUATION STACK ;

PARENT .LOCALS — TASK.T

TASK.HIGH_BOUND

r—

EVALUATION STACK
PARENT.T

—aa—— PARENT.HIGH_ BOUND

Figure 2-5: Parent With Nested Task i

compiler at compile time. If subprograms executing within
such a nested task recurse excessively, the space allocated 4
to the task will be exhausted and execution must stop. The
program would then have to be recompiled, this time

notifying the compiler that the nested task needs more

space. A better, more complicated, solution would be to
develop a run~time space allocation scheme to cover such
occurences. However, space is currently computed at compile

time only, and there is no run-time space allocation scheme.

22




PROJECT DESCRIPTION

An earlier section on recursive subprograms hinted |
strongly that the pseudo-macnine required a stack-oriented

processor, and the previous section on tasking hinted at

multiple processors. The following section will describe
the resulting combinatio:: which comprises the system

architecture. h

2.3 Pseudo-machine architecture

The pseudo-machine consists of multiple, stack-oriented
processors accessing a common, partitioned memory through a 3
controller which resolves conflicts. The following diagram

illustrates this architecture.

Rl | B
‘ 1o

zJ

e
ConNTROLLER
L !
[ l !
Proarrmn Stk !
MemoRy M moRy |
i
Reroy Gueve ScrHedoeR |

Figure 2-6: System Architecture

The figure 1illustrates n' processors accessing a

common, partitioned memory. The stack memory constitutes a




PROJECT DESCRIPTION

single stack that 1is shared among the processors, and the
program memory contains the code for a single Ada program.
The system also has a ready queue for tasks waiting to begin
or continue their execution. Associated with the ready
queue is a scheduler who assigns waiting tasks to idle
processors until exhausting the supply of either tasks or
processors. It is 1implemented as a procedure which 1is

called by some of the pseudo-machine's instructions.

The role of the scheduler can be summarized as follows.
When the pseudo-machine begins executing an Ada program,
there is only a single thread of control for the main
procedure. If that procedure spawns tasks, they are
initiated by an ACTIVATE instruction that enters the spawned
tasks in the ready queue and calls the scheduler. If these
tasks must suspend their execution, for example while
waiting for a rendezvous, they release their processor and
call the scheduler. The scheduler is also called when a
task terminates its execution. Briefly, the scheduler is

called when a task is activated, blocks or terminates.

Please note that the structure 1illustrated on the
diagram is logical only. The actual physical structure of
the system can be quite different as long as the logical
structure is preserved. Each of the 'n' system processors

is stack oriented, and their operation will now be

24



PROJECT DESCRIPTION

described.

Stack processors get their name from the way they
evaluate arithmetic expressions. They evaluate expressions
in post-£fix, using a stack to store operands and
intermediate results. When evaluating such an expression, a
stack processor pushes each operand it encounters onto an
evaluation stack in its memory and uses each operator it
encounters as an instruction. When executing an
instruction, it assumes the operands are aiready on the
stack (This is true because of the properties of post-fix
evaluation.), and it removes the operands and pushes the
result back onto the stack. Since the processor knows where
the operands reside, and since it knows where to put the
result, the processor requires no addresses to execute such
an instruction. For example, the expression 2 * 3 + 9
becomes 2, 3, *, 9, + in post-fix, which translates to PUSH
2, PUSH 3, MULTIPLY, PUSH 9, ADD in stack machine
instructions. The result of the expression now resides on
top of the stack and 1is available <for assignment to a
variable, comparison with other values or for whatever use

that can be made of an expression's result.

When a stack machine 1is wused to implement a block
structured language, such as Ada, another stack-like feature

exists. Since procedure activations obey a last-in,




PROJECT DESCRIPTION

first-out (LIFO) discipline, stack space is allocated to
them in a LIFO manner. These space allocations and
deallocations are strictly stack=-like, but within the space
of each allocation, words are accessed in a controlled but
hardly stack-like manner. Values may be removed from the
evaluation stack and transferred into the 1local variable
space, or removed from the local variable space and placed
on the stack or even stored within another procedure's
activation record. Additionally, control data can be

accessed or changed at random.

The stack processors in this project contain registers
to facilitate access ¢to the data. These registers match
closely with the boundaries between the previously described
blocks of data contained in a procedure activation. To
describe these registers in a specific context, consider the

tesk activation in figure 2-7.

The first word of the activation record is marked by a
'BASE' register and the top of the evaluation stack is
marked by a 'T' register. Remember that the evaluation
stack grows downward toward the high boundary on the
diagram., The task's high boundary is initially marked by
the 'HEAP' register. However, the 'HEAP' register's primary
purpose 1s not just to mark the initial high boundary of the

task's stack space. Notice that the 'HEAP' register on the




PROJECT DESCRIPTION

BASE —- —a—BASE
CONTROL DATA ;

LOCAL VARIABLES

EVALUATION STACK

T - —~=—TOP OF STACK

UNUSED STACK SPACE

HEAP —e»— 1
DYNAMIC VARIABLES !
-a— HIGH BOUNDARY

Figure 2~7: Correspondence of Registers and Blocks

illustration has already moved away from the high boundary.

The primary purpose of the 'HEAP' register is to mark
the top of the dynamic heap. The dynamic heap provides
storage space for program variables created at run time,
like those created dynamically by the 'NEW' operator in
PASCAL. As these variables are created, space is allocated
to them from this heap structure. On the previous diagram,

the heap grows upward toward the stack.

Note that the boundary between the control data and the
task's local variables/objects 1is not marked by a special
register. The reason for this is that control data 1is of

known length at compile time, and therefore, the offset to

the first local variable can be computed.

o




PROJECT DESCRIPTION

Now that some background information on stack
processors has been covered, more detailed information on

the project's pseudo-machine can be presented,

2.3.1 Memory

The memory contains two parts, the stack memory and the
program Memory . As mentioned previously, any system
processor must be able to access any word in stack memory.
The following section shows that this is also required of

the program memory.

2.3.1.1 Program memory

Program memory contains only the instructions to be
executed by the processors. No variable space is allocated
within program memory, and only read operations are
performed on it. Thus, an actual implementation could hold

any program in a read-only memory.

Multi-tasking requires the program memory to be
accessible to multiple processors. This is true because
Ada's visibility rules permit procedures to be global to
multiple tasks, and therefore, two tasks executing in
parallel could call a single procedure at the same time.
Making duplicate copies of the code is alsoc a possibility,

but this is less straight-forward.




PRQJECT DESCRIPTION

2.3.1.2 Stack memory
Stack memory contains space for stack-frame control
data, program variables, temporaries, and dynamically

allocated variables.

Stack-frame control data: A stack frame 1is allocated

upon entrance to a block, to a subprogram or upon
initialization of a nested task object. This stack frame

contains the following information:

. The static link: The static 1link records the
textual nesting level of the program as it was
originally written. It 1is wused for run-time
addressing of variables and objects:

2. Dynamic link: The dynamic link marks the base of
the calling procedure's activation record. It is
used to deallocate stack space upon completion of
the procedure's execution.

3. Program counter: Storage space is provided for
the current value of the processor's working
registers. This 1is necessary since a task may

have to give up its processor at any time. For
example, a higher priority task may pre-empt this
task, forcing it to release the processor. The
current values of the processor's working
registers must then be stored so that the
interrupted task can resume its execution at a
later time. The 'program counter' slot is used
to store the current value of the 'PC' register
should this occur.

4. Task flag: The task flag is a Boolean variable
that indicates whether or not the stack frame is
a task. It is used to indicate task boundaries
when processing run-time exceptions raised in the
program.

5. Active nested task counter: The active nested
task councer 1s wused to record the number of
nested tasks currently active in the given stack

29




10.

1].

12.

13.

PKOJECT DESCRIPTION

frame. The definition of the Ada language states
that a block cannot be exited until all nested
tasks have completed tneir execution (Ref 2
9-5). The counter is used to enforce this rule
at ru.. time.

Waiting flag: The waiting flag 1is a Boolean
variable that indicates whether or not the parent
task 1s waiting to terminate its execution. For
example, if the parent reaches the end of 1its
code, and it still has active nescted tasks, it
must wait for them to complete, 1t then sets the
walting flag to true, stores the current values
of ics processor's working registers, and
releases its processor.

Exceptions: Ada allows controlled error
processing at run time through its exception
facility. This control word 1s currently not
used since exceptions are not implemented. When
exceptions are implemented, the word will be used
to record information on exceptions handled
within the block. More control words will be
required te accomplish this.

Priority: This word is a run time record of the
task's priority.

Top of stack: The top-of-stack control word
provides temporary storage for the processor's
'T' register.

Base: The base control word provides temporary
storage for the processor's 'BASE' register.

Link: When a task is entered into a queue, the
link control word points to the next task waiting
in the queue. A single link field is sufficient
since it is a characteristic of the language that
a task can be waiting in only one queue (Ref 7
11-44).

Heap: The heap position provides temporary
storage for the processor's 'HEAP' register.

Data lock: This Boolean variable indicates
whether or not the task frame is currently being
accessed by another task. It is wused to limit
access to the stack frame control data to a
single processor at a time. This word is

30




PROJECT DESCRIPTION

currently not accessed by any of the
pseudo-machine instructions. This deficiency
needs to be addressed.

14, Caller: When a called task executes an accept
statement for a particular entry, a pointer to
the base of the accepted caller is stored in this
slot. This facilitates accessing the caller's
top of stack to rectrieve actual parameters during
an entry call and also facilitates restarting the
task upon completion of an accept body.

15. Return: This control word is used to record the
return value of the program counter during a
procedure call.

16. Entry: This word records the number of entries
declared in the current activation, and is used
to compute the amount of space required for entry
frame control data. The instructions that use
this control word assume that the entry frames
are allocated immediately following the 'entry'
control word. See paragraph 2.4.3.1 for an
explanation of the structure and operation of the
entry frame.

Program variables: The compiler allocates space for

variables and objects after allocating space for the stack
frame control data. Since the stack frame requires 16
words, the first word available for a local variable or
object is the 17th word on the stack, if there are no task

entries declared.

Temporaries: Temporaries are allocated as required

during the evaluation of an expression. For example:

A=A+ A

could translate to:

31

&




- o1

PROJECT DESCRIPTION

LOAD A -- The value of A is pushed on the stack
-- thus allocating the first temporary.

LOAD A -- The value of A is pushed, now 2 temporaries
-- are allocated.
ADD -- The two operands are popped and the value

-- of A+ A is pushed. Now, only 1 temporary
-- is in use.
STORE A -- The stack is popped, and the value is stored
-- at the address for A, Now, no temporaries d
-~ are 1in use,

LOAD, ADD and STORE are descriptive mneumonics and have
the meaning described in their associated comments.

2.3.2 Stack processors

. el o -

Each processor has 5 working registers: a program

counter (PC), an instruction register (IR), a base register
(BASE), a top of stack register (T), a heap pointer (HEAP)

and a status register (STATUS).

1. PC The program counter is a pointer to words in
the program memory. It indicates the next
instruction that the processor will execute.

2. BASE The base register is a pointer to words in
the stack memory. It indicates the first memory
word of the stack frame of the currently
executing subprogram or task.

3. IR The  instruction register contains the
instruction that the processor is currently
executing.

4, HEAP The heap register is a pointer to words in
the stack memory. It indicates the top of the
dynamically allocated memory space.

5. T The top of stack register is a pointer to words
in the stack memory. It indicates the top of the
stack space of the currently executing subprogram

32




SRR — -—

PROJECT DESCRIPTION

' or task.

6. STATUS: The status register contains a bit that
indicates whether or not the processor is busy or
idle, and a field that points 1into the stack
memory, called CURRENTJOB. This field must be
the same size as the processor's other working
registers, since 1t 1indicates the base of the
currently executing task. The interpreter program
requires an additional piece of information for
multiple processor simulation, and this is also
contained 1in the status register. This
information 1is wused to limit the number of
instructions executed by a processor before it
returns control to the supervisor. The
supervisor then selects the next processor whose
status 1is 'BUSY' and allows it to work on its
assigned task. Thus, the supervisor serves to
timeslice the actual processor among the
simulated processors. For more information, see
the code listing for the interpreter in appendix
1v.

The following figure illustrates the configuration of a

stack processor working on a task.,

Note that the BASE, T and HEAP registers point into the
stack space and indicate the first word in the stack frame,
the top of the evaluation stack and the top of the
dynamically allocated variable space, respectively, The
instruction register holds the instruction that is currently
executing, and the program counter points to the next
instruction that will be executed. Finally, the STATUS
register contains information necessary for
multi-processing, and also points to the base of the task.,
Note that this diagram illustrates a task that has not

called a subprogram, since the BASE register is equal to the

33




p— 1

PROJECT DESCRIPTION

BASE g CURRENTJOB
STACK FRAME
CONTROL DATA PC : next instruction

IR : current instruction

LOCAL VARIABLE
AND STATUS : busy

OBJECT SPACE active task ptr

EVALUATION STACK

HEAP

DYNAMIC VARIABLES

TASK HIGH_BOUNDARY |

Figure 2-8: Sample Task Frame

base of the task object, marked by the CURRENTJOB register.
If the task had called a single subprogram, the base
register would point to the first word in the unused stack
space (the first word of the new procedure activation),
while CURRENTJOB would retain its position marking the base

of the task.

Now that the architecture of the pseudo-machine has
been discussed, the instruction set of the machine will be

presented.

34




PROJECT DESCRIPTION

2.4 Pseudo-machine instruction set

The 1instruction set currently contains operations tnat
are specifically tailored to a subset of the Ada language.
The subset is described in the user's guide in appendix IIlL.
The currently implemented instructions can be divided into 5
classifications: relational operators, integer or single
word arichmetic operators, tasking operators, 1/0 operators
and miscellaneous operators. First, the instruction format

will be described.

Each instruction contains three fields of information:
the operation c¢ode field, the level field and the address
field, The operation code field contains the name of the
specific operation to be performed, and the level and
address fields provide data necessary to perform that
operation. If the level and address fields are not
sufficient to contain the data required by the named
operation, additional data words may follow that
instruction. The following discussion of the operators does
not specify the fields where such data is stored, but only
lists the additional data required. Additional details may
be obtained by reading the interpreter source listing in

appendix IV,

35

o



PROJECT DESCRIPTION

2.4.1 Relational operators

The relational operators, EQUAL, GTR, GTREQ, LESS,
LESSEQ, NOTEQ, ZXOR, ZAND and ZOR are binary operators which
require no additional data for their operation. The two
operands are assumed to reside on top of the temporary
stack. (Boolean operands in che’currenc implementation are
not packed and require an entire word on the stack.) At run
time, operands are popped from the stack and evaluated
according to the indicated operation. A Boolean result 1is

pushed back on the stack as defined by the following table.

S[T-1] S[T]“
A B || EQUAL GTR GTREQ LESS LESSEQ NOTEQ ZXOR ZAND ZOR
0 0 1 0 1 0 1 0 0 00
0 1 0 0 0 1 1 1 1 0
1 0 0 1 1 0 0 1 1 0o 1
1 1 1 0 1 0 1 0 0 1o

Figure 2-9: Truth Table for the Binary, Relational Operators

ZNOT 1is a unary operator in this classification. The
operand must be Boolean, and it is assumed to reside on top
of the stack. ZINOT pops the stack and pushes the operand's

opposite Boolean value.

s(T]
0 1
1 0

Figure 2-10: Truth Table for the Unary-Operator ZNOT




PROJECT DESCRIPTION

2.4.2 Integer (single word) avithmetic operations
This classification contains single-word loads and
stores, the binary operations, +, -, /, * and MOD, and the

unary operator NEGATE.

2.4.2.1 Single word loads and stores i
Operators exist for loading and storing variables and

for loading constants.

Single-word 1loads and stores: The additional data

required for load and store operations is the location of
the variable whose value is to be loaded or the destination
of the variable whose value is to be stored. As previously
stated, the compiler cannot generate a 'hard' run-time
address for a variable at compile time. However, since the
storage space required by a single activation of a procedure

is known, variables can be assigned locations relative to

the beginning of the procedure's stack frame. Thus, at run
time, a variable can be specified by providing 1its offset 4

from the base. However, there is one complication.

Ada's wvisibility rules, as those of most other block

structured languages, allow variables stored in other
procedure activations to be accessed by the active
subprogram. Thus, it is also necessary to specify which
"bage'" the offset 1is relative to. The compiler provides

this information as additional data with the instrucction.

37




PROJECT DESCRIPTION

The single word loads and stores include the operators
ILOAD and ISTORE. The operator ILOAD wuses the additional
data provided with the instruction to retrieve a variable
from the variable storage area. Then it pushes the value on
the evaluation stack. The operation ISTORE pops the stack
and stores the value in the location specified by the

additional darta.

Loading constants: LILOADCONST 1is the operator rfor

loading a constant value onto the evaluation stack. The
additional data required by ILOADCONST is the value of the
constant to be loaded. ILOADCONST takes the specified value

and pushes it on the stack.

2.4.2,2 Arithmetic operators

The binary arithmetic operators + (IADD), - (ISUB), /
(IDLV), * (IMULT), IMOD, and IREM assume that their operands
reside on top of the stack. These operators all work
similarly by removing two operands, applying the operation
and pushing the result. The unary arithmetic operator,
INEGATE, pops the stack and pushes the integer with the

opposite sign.

38

b ¢




PROJECT DESCRIPTION

2.4.3 Tasking operators

The tasking operators include ACTIVATE, CALLENTRY,
ACCEPT, RELEASE, TERMINATE, ENTILOAD and ENTISTORE. Before
considering the operation of these, a brief review of Ada’s

tasking facility might be desired. See section 2.2.2.1.

The additional data provided with these instructions is
computed by the compiler at compile time. when compiling a
task, the compiler computes the space required and allocates
it within the 1local wvariable space of the task's parent.
Other data, concerning the number of entries, priority and
initial values for a task's HEAP, BASE, T, etc., are also
computed and are available as additional information for the

tasking operators.

2.4.3.1 ACTIVATE

The parent task executes the ACTIVATE instruction to
initialize the stackframe of one of 1its nested tasks.
Additional information provided with the instruction
includes the nested task's base pointer, the heap pointer, a
pointer to the task's code, the 1initial stack top, the
task's priority and the number of entries in the task. Thne
base, heap and initial stack top pointers are not absolute
addresses but are relative to the base of the parent. The
parent wuses this information to compute absolute initial

values for each of the nrocessor's registers. The 1nitial

39

e




PROJECT DESCRIPTION

values for the task's static and dynamic links are also set,
and each entry declaration in the nested task is allocated
space necessary for its control. This control data for the
entry declaration 1is called an entry frame in the rest of
this paper. The following paragraph describes the data it

contains.

Three items of information are necessary for the
control of an entry. The first item is a Boolean variable,
referred to as the gate, which is used to record th. status
of the entry. If the task owning the entry 1is waiting to
execute an accept statement for that entry, the gate is
opened; otnerwise, it is closed. The second 1item 1is a
pointer to the code which is used to record the location of
the code of the currently executing accept body, This 1is
used only during the execution of a select statement, which
has not been implemented in the translator. Currently, this
item of information 1is not referred to in any of cthe
implemented instructions. The final control word serves as
a queue head pointer for tasks calling the entry. The
pointer actually points to the stack frame of the first task
waiting in the queue. Other tasks in the queue are chained
together via the link field in their stack~frame control

data.

In addition to allocating and initializing the entry

40




PROJECT DESCRIPTION

space, the parent initializes tne rest of the stack frame
and enters the nested task in the ready queue. After all
tasks nested within the parent are 1initialized, cthe

scheduler is called, and the tasks are assigned processors,

if available.

2.4.3.2 CALLENTRY

The calling task executes the CALLENTRY instruction
when it wishes to communicate with another task. Data
included with the instruction includes the number of entries
in the called task and the particular entry being called.
First, the caller finds the appropriate entry frame 1in the
called task's stack frame and enters itself in the wait
queue for that entry. The caller then checks the entry sate

to see if it is open or closed.

If the gate is open, the <called ctask has previously
executed an accept statement for this entry and found no
callers waiting. (In response to this situation, the called
task would have opened the gate, stored 1its context and
released 1its processor. See paragraph 2.4.3.3, the ACCEPT
operator.) In the pseudo-machine, the task owning the enrtry
executes the accept body, so the calling task must awaken
the suspended, called task. It does this by entering the
task in the ready queue and by calling the scheduler. The

caller also releases its processor, waiting for completion




PROJECT DESCRIPTION

of the accept body.

If the gate is closed, the called task is not waiting
for a call to cthat entry. In this situation, the <caller
merely adds itself to that entry queue, and releases 1its

processor.

2.4.3.3 ACCEPT

The called task executes the accept instruction when it
is ready to communicate with a caller. Additional
information necessary to execute an ACCEPT statement is the
name of the entry being accepted. First, the appropriace
entry frame is checked to see if any tasks are in the queue.
If tasks are waitinyg, the first one is removed, and the
appropriate accept body 1is executed. If no tasks are
waiting, the called task opens the appropriate entry's gate,
stores 1its processor's context, releases its processor and

calls the scheduler.

2.4.3.4 RELEASE

The called task executes a release instruction after
completing an accept body. RELEASE restarts the parallel
execution of the calling task by returning it to the ready
queue and calling the scheduler. No additional information
is required by RELEASE, because a pointer to the caller 1is

stored at a known offset in the stack=-frame control data.

=~
ro

PR




PROJECT DESCRIPTION

2.4.3.5 TERMINATE

A nested ctask executes a terminate instruction at the
end of its execution. First, the terminating task notifies
its parent that its execution is complete and checks to see
if the parent was waiting for ics termination. I1f so, the

nested task enters its parent in the Tready gueue.

In either case, whether the parent was waiting or not,
the nested task releases 1its processor and calls the
scheduler. No additional information 1is required by
TERMINATE since the nested task can locate the base of 1its
parent, and since the parent's control data is stored at
known offsets from its base. That is, TERMINATE is able to
locate all the information it rtieeds within the parent’s

stack frame.

2,4,3.6 ENTILOAD

The called task executes an ENTILOAD instruction only
within an accept body when referencing a entry's formal
parameter. The actual parameter corresponding to this
formal parameter is retrieved from the caller's stack and is
pushed on the called task's stack. Additional information
required is the address of the actual parameter with respect

to the calling task's 'T' register.

43

JRS—

[EOUNEF RSN "SR




r_» R e ——— . e j

PROJECT DESCRIPTION

2.4.3.7 ENTISTORE
The called task executes an ENTISTORE instruction only

within an accept body when assigning a value to an entry's

formal parameter. A value is popped from the called task's
stack and stored within the zalling task's stack frame at
the location of rthe corresponding actual parameter.
Addicional information required is the address of the actual

parameter. This address is an offset with respect to the

calling task's 'T' register.

2.4.4 1/0 Operations
The input=-output instructions include operators for ;9
writing strings (SPUT) and integers (IPUT) to the output LT

file, and for reading integers (IGET) from the input file.

2.4.4.1 SPUT

Additional information required by the operator SPUT

includes a line-feed Boolean that indicates whether or not a

SN D S

carriage return and a line feed is to be written on the
output file, the number of characters to print and the
character data itself. SPUT writes the indicated number of
characters to the output file, and then, if the line-feed

Boolean is true, it generates a carriage return/line feed.

44




PROJECT DESCRIPTION

2.4.4.2 TPUT

Additional information required by the operator IPUT is
the 1line-feed Boolean. IPUT pops a word off the stack and
writes the ASCII equivalent of the value to the output file.
If the line-feed boolean is true, it generates a carriage

return/line feed.

2.4.4.3 IGET

IGET reads a string of ASCII digits, delimited by a
blank, from the input file, converts them to an integer
value and pushes it on the evaluation stack. No additional

information is required,

2.4.5 Miscellaneous Instructions

The miscellaneous instructions 1include operators to
call a subprogram or function (CALL), ¢to shift actual
parameters in preparation for a function <call (PARAMSHIFT)
and to return from a call (RETURN). Other operators in this
category include the absolute and conditional jumps (JMP,
JMPF, JMPT) and an operator to increment the T register

(INCT).

2.4.5.1 CALL

The calling subprogram executes a CALL instruction to
set up an activation record for the called subprogram. The
instruction initializes the static and dynamic links, stores

the proper return address and initializes other information

45




PROJECT DESCRIPTION

within the stack frame. Additional information required is
data to set the static link and a pointer to the code for

the called subroutine.

2.4.5.2 PARAMSHIFT

Additional information required by the PARAMSHIFT
operator is the number of parameter words to shift and the
shift distance. The calling subprogram executes this
instruction only when calling a procedure to allocate space
on its evaluation stack for the return variable. The actual
parameters 4re shifted wupward on the stack the number of

spaces indicated by the additional information.

2.4.5.3 RETURN

The called subprogram executes a RETURN instruction
after completing 1its execution. If the called subprogram
has no active nested tasks, it deallocates its stack space
by resetting the T and Base registers and loads the return
address into the program counter. If nested tasks are still
active, the called subprogram cannot return; so 1t stores
its context, releases its processor and calls the scheduler.
No additional information 1is required to execute a RETURN

instruction.

46




PROJECT DESCRIPTION

2.4.5.4 JMP

Additional data provided with the JMP operator is the
destination address. JMP merely loads this address into the
program counter so that the next instruction executed will

be the one specified in the instruction.

2.4.5.5 JMPF, JMPT

Additional information provided with the conditional
jump operators is the destination address. Both JMPF and
JMPT pop a single operand from the stack and test its
Boolean value. If the operand is false, JMPF loads =he
program counter with the destination address so that ‘he
next instruction executed will be the one specifiec. JMPT
does just the opposite, transferring control only if the

Boolean value is true.

2.4.5.6 INCT
Additional information provided with the instruction is
the number of words to increment the T register. INCT adds

the number provided to the current value of the T register.

This completes the description of the pseudo-machine's
instruction set and also completes the description of the
over-all design of the pseudo-machine. 1If more detailed
information is desired, please refer to the interpreter
listing in appendix 1IV. Now the project's second major

product, the Ada test compiler, will be discussed.

47




PROJECT DESCRIPTION

2.5 The compiler

A compiler must recognize high level language
constructs and translate them into equivalent machine level
instructions. This section first considers the problem of
translation and then describes the recognizer wused in the
Ada test compiler. Finally, the semantic routines that

accomplish the translation are discussed.

2.5.1 Background -~ Compilation

Before describing the project's test translator, a
brief introduction to the compilat_un process will be
presented. The emphasis will be on the problem raced by the
translator, vrather than on how the translation is
specifically accomplished. This problem will be described
by postulating the existance of a simple machine and a high
level language and by using these tools to illustrate the

compilation task.

The postulated machine: The postulated wmachine 1is a

stack oriented machine that performs operations on operands
previously placed on a stack. The machine described here is
actually a subset of the PL/0 machine described by Niklaus

Wirth in his book Algorithm's + Data Structures = Programs

(Ref 14 : 331-336). Briefly, the machine's instructions are
stored in program memory and are executed 1in sequential

order unless the order is modified by an instruction. The

48

-4 -




r

PROJECT DESCRIPTION

instruction set consists of the following 7 instructions.

1. LOD A: LOD A places the variable named 'A' on the

stack.

2. LDC X: LDC X places the value 'X' stored in the
instruction on the stack.

3. STO A: STO A saves the variable named 'A' in
memory.

4. ADD: ADD removes two operands from the top of the
stack and adds them together. The result is
pushed on the stack.

S. CHECK <: CHECK < removes two operands <trom the
top of the stack. 1If the second operand removed
is less than the first, then the wvalue TRUE 1is
pushed, otherwise, the value FALSE is pushed.

6. JMP X: JMP X causes the machine ro execute the
instruction at location X next.

7. JMPF X: JMPF X removes an operand from the top of

the stack. If its wvalue 1is FALSE then the
machine exkecutes the instruction at location X.

The high-level lanzuage: The postulated high-level

language consists of the single sentence:

IF <CONDITION> THEN <STATEMENT> ELSE <STATEMENT>.

The three words IF, THEN and ELSE 3ive this sentence
its structure. The word IF signals that a conditional
statement will (or should) follow, and the words THEN and
ELSE signal that a statement follows. Furthermore, the
statement following THEN 1is to be done only irf the

conditional statement is true, and the statement following

49

[ .




PROJECT DESCRIPTION

ELSE is to be done only if it is false.

The translation: The specific example to be translated

to hypothetical machine code is:
IF A< B THEN A := A+ 1 ELSE B := B + 1,

In this sentence, A and B are variables that are assumed to

have been initialized to some value, ':=' is an assignment
operator, '+' is an addition operator and '1' represents the

decimal number one.

The compiler's translation problem is similar to the
problem faced by a human interpreter. The interpreter must
take a sentence in the source language and create a sentence
with the same meaning in the target language. Similarly,
the compiler program must translate the meaning of a
sentence written in a high-level language to a sentence with
the same meaning in the machine's language. However, there
is a difference between this translation problem and the
human interpreter's problem. When translating between human
languages, the interpreter 1is wusually working with two
languages of approximately the same expressive power, where
a sentence 1in one language will become an equivalent
sentence in the other language. In contrast, the compiler

is working with two languages with vastly different

expressive powers, where a sentence in a high-level language

P




oum—— oy e e

PROJECT DESCRIPTION

may translate to hundreds of sentences in machine language.
Thus, the compiler's goal is to provide a translation which
preserves the meaning of a high level language sentence

given the limited set of resources at the machine level.

There are several ways that a compiler can recognize a

high level language construct, but these metheds will not be

discussed here., It is merely assumed that the compiler can
recognize one., Once the construct 1is recognized, the
associated meaning is known, and the compiler can issue
machine language instructions which preserve that meaning.
The sequence of code the compiler would generate to preserve

the meaning of the statement

IF A< B THEN A := A + 1 ELSE B := B + 1

is:
LOD A --load variable A
LOD B --load variable B
CHECK < --remove A and B from the stack

--and replace with the value of A < B
JMPF, FALSE_PT --if the value on top of the stack is
--false, then go to label FALSE_PT

LOD A --begin true part

LDC 1 --load the constant value 1

ADD ~--pop the two operands and push the sum

STO A --store the top of stack value in
--the location assigned to variable A

JMP END --jump over the false part

<KFALSE_PT>>

LOD B --begin the false part

LDC 1 --load the constant value 1

ADD --pop two operands and push their sum

STO B ~--gstore the top of stack value in

--the location assigned to variable B
<<END>> --end of translation




PROJECT DESCRIPTION

The reader should verify that this translation is
correct. That is, assure that the defined meaning of the
high level language construct is preserved 1iIn the
translation to machine instructions. Now, with this example
as background, the Ada to pseudo-code translator developed
in the project will be described. The first topic to be
discussed is the mechanism that recognizes hLigh level

language constructs, the LR(1) parsing automaton.

2.5.2 LR(1) parsing automaton

The LR(1) parsing automaton is a bottom-up,
finite-state machine whose operations are directed by a set
of language specific tables. For an introduction to LR(1)

parsing see Appendix II.

The specific system used to build the parser was the LR
package from Lawrence Livermore Laboratory (Refs 12 ; 13),
This system 1is written in ANSII standard FORTRAN and
consists of an automatic parser generator and a parser
skeleton. Since the project was written in PASCAL, the
parser skeleton had to be translated, and the cabular data
output from the automatic parser generator had to be

reformatted. The following paragraphs describe the

construction of the parser, its structure and its operation.

ol aa.




PROJECT DESCRIPTION

2.5.2.1 Construction

Construction of the parser required inputting an LR(1)
grammar into the automatic parser generator, inserting the
resulting tables into cthe parser skeleton, and writing a

lexical analyzer for Ada.

™

The automatic parser generator: The automatic parser

generator constructs the language speciric ctables cthat
control the operation of the aucomaton. An  LR(1) grammar
for the subject language, in this case Ada, is input to the
generator, and a grammar analysis and a set of <tables are
produced., The grammar analysis consists of a sorted listing
of the vocabulary, a formatted listing of the language
productions and a human readable version of the resulting
finite-state control for the parser. The set of tables is a
machine readable version of the finite-state control and is

in the proper format for insertion into the parser skeleton.

The parser skeleton: The parser skeleton 1is also

writ.en in FORTRAN 66 and consists of a set of routines that
interpret the tables generated by the automatic parser
generator. The package consisting of the parser skeleton
and the tables requires the addition of a lexical analyzer
to produce an operating parser. The lexical analyzer
(scanner) scans the input file, isolates tokens and returns

that token's reference to the arser. Collecctively, the
P Y

53




PROJECT DESCRIPTIOHN

parser skeleton, the tables and the scanner comprise the

core of the compiler program.

Advantages: Using the LR system provides three major
advantages. First, the parser can be constructed quickly
with the assurance that the final results will parse the
srammar correctly. Second, the grammar can be changed
relatively easily, if necessary. Finally, the resulting
program is space efficient and wmodular. The following

paragraph describes the program's modular structure.

2,5.2.2 Parser structure
The following figure contains a chart which describes
the structure of the parser using a technique described by

G. L. Myers in his book Composite Structured Design (Ref 11

13). The figure consists of a network of modules arranged
in levels, with a module's position determined by the
calling dependencies between it and the other modules., The
module at the top of the diagram is named PARSE. lodule
PARSE calls four subordinate modules, named FINDREDUCTION,
DOREDUCTION, FINDTRANSITION, and DOTRANSITION, When PARSE
calls FINDREDUCTION, it provides module FINDREDUCTION wicth
information concerning the current state and the current
look-ahead symbol. Upont return, FINDREDUCTION provides
PARSE with a production number, These data flows are

indicated on the diagram by a number, and the specific data

54




T ) .
PROJECT DESCRIPTION
PARSE
| / 3 2
FIND DO DO
REDUCTION REDUCTION TRANSITION
5 \6\
— &
© SEMANTIC FIND ' GET ;
j TRANSITION SYMBOL |
L OUT
1 Current state and token Production #
2 Production #, Stkptr New state #, Stkptr
3 Current state and token Hew state #
4 New state =, Sckptr Stkptr, Current state #
Token description
5 Production #, Stkptr === 0 eeeccccce----
6 Stack[stkptr].state, llew state #
Left-hand side (production #)
7 mmmmmmmee- Token description

Figure 2-11: Parser-Structure Chart

passed 1is found 1in the chart at the bottom of the figure.
The remainder of the diagram may be interpreted in chis same

way.

2.5.2.3 Parser operation
The controlling module, PARSE, repeatedly executes a
series of statements until it transitions ¢to its final

state. The following algorithm describes PARSE's actions.

To begin, PARSE <calls FINDREDUCTION to see 1if any
reductions exist. If a reduction can be done, module

DOREDUCTION is called, and PARSE soes ©back to repeat the

55




PROJECT DESCRIPTION

REPEAT
Check to see if a reduction is possible while in :tae
current state with the current look-ahead token.
If reduction is possible: Do the reduction.
If reduction is not possible:
Check to see if a transition is possible while in
the current state with the current look-ahead token.
If transition is possible: Do the transiticn.
If ctransition is not possible: Syntax error ... source.
UNTIL current state = final state.

Figure 2-12: Algorithm for lodule Parse

loop. If no reduction can be done, PAXSE calls
FINDTRANSITION to see 1if any transiticns exist. If a
transition can be done module DOTRANSITION is called and
PARSE goes back to repeat the loop. If no transition can be
done, PARSE has detected a syntax error. This sequence

continues until the parser transitions to the final state.

2.5.3 Semantic routines

This section traces the flow of semantic information
throughout the translation process. Semantic information is
initially collected by the scanner and stored on semantic
stacks. This information wmay eventually be transterred to

the symbol table as directed by the semantic routines.

2.5.3.1 Scanner

SCANNER's furction is to find the next lexical item in

the input file. After finding 1it, the scanner also
associates a certain semantic meaning with that token. For
example, an identifier is returned <to the parser as

56

v i e B, il . = oo




YT A i i

PROJECT DESCRIPTION

(*identifierx*, pointer to symbol table entry, AsCII
representation). For parsing purposes, the only significant
information is that the next token is an *identifier¥. The
semantic routines wuse the remainder of the information to
determine whether or not this identifier is <correctly used

in che particular context.

2.5.3.2 Semantic stacks

The parser maintains 2 parallel stacks, one to store
the next token and another to store the current stace. In
addition to these, various other stacks are maintained to
store data associated with the stacked token. These stacks
are called the semantic stacks. For example, additional
semantic stacks can be wused to store a pointer to the
token's symbol table entry, to store its ASCII
representation, its integer, real or character value or to
retain any other information that might be required to
establish the token's meaning. The semantic routines then
use this information to determine if the token is proper for

the given context.

2.5.3.3 Sample semantic routine
Jhen DOREDUCTICON calls SEMANTIC, 1t tells SEMANTIC
which particular construct it has recognized 1in the input

file. Yor example, assume that module DOREDUCTION has

called SEMANTIC with production number 289. This tells the

57

heiles kPRl




PROJECT DESCRIPTION

semantic module that production number 289 has been isolaced
in the input and that the production's components have been
assembled on the stack. Suppose production number 289 is
defined as follows:

CPARAMETER DECLARATION> ::= <Ib> : <MODE_OPTION>

{SUBTYPE_INDICATION> <INITIALIZATION_OPTION>.

From this, the semantic module knows that the items
composing a <PARAMETER DECLARATION> are on top of the stack.
Furthermore, it knows these items have been assembled on the
stack by the parser in the order they were encountered;
thus, the top item is an <INITIALIZATION_OPTION>, and the
other items can be located by their offset from that item.
Now, the appropriacte semantic actions for a
{PARAMETER_DECLARATION> can be accomplished using the data
assembled in the semantic stacks. Appropriate semantic
actions for a <PARAMETER DECLARATION> might include:

- Look up the idertifier (stack [stkptr - &4]) in the
symbol table and check whether or not it has been
previously declared.

- If it nas been previously declared, call the error
routine.

- If it has not been previously declared, add the
rew identifier to the symbol table, and store
semantic data associlated with 1t, e.g. Sec cthe

identifier's type to 'parameter', and store cthe
parameter's mode (stack[stkptr =~ 2]), subtype
(stack [stkptr - 1]) and initial value (stored at

stack [stkptr]) in the symbol table.

58

S —y




PROJECT DESCRIPTION

After completing the semantic actions associated with
production 289, SEMANTIC returns control to DOREDUCTION.
DOREDUCTION then removes the five icems comprising
production 289 from the stack and replaces cthem with the

single item <PARAMETER DECLARATIOND>.

2.5.4 Symbol table and visibility
Name visibility 1is enforced with a compile time
environment stack, stacking rules and special symbol-table

access routines.

2.5.4.1 Environment stack

An entry in the environment stack contairs information
on the name of the environment, whether or not the
environment acts as a package visible part, and whether or
not the environment is directly visible. Initially, the

environment stack is empty.

2.5.4.2 Stacking rules

The stacking rules specify which names are to be pushed
on the environment stack and what vaiues are to be stored
with them. These rules assume the existence of two
operations on the environment stack, PUSH ard POP, and of a
global variable used to record the lexical level. Again,
the environment stack consists of 3-tuples which contain the
environmenz name and two Boolean variables that indicate

whether or not the environment acts like a package visible

59

|
|
'
]




PROJECT DESCRIPTION

part and whether or not the environment represented by the

entry is directly visible.

PROCEDURE
entry : increment the lexical level;
PUSH (procedure name, false, true);
exit : decrement the lexical level;
POP until name = procedure name
POP
PACKAGE VISIBLE PART
enctry : PUSH (package name, true, true);
exit : POP until name = package name

REPLACE (package name, true, false)

PACKAGE BODY
entry : PUSH (package name, true, true) fi
exit : POP until name = package name .
POP
TASK VISIBLE PART
enctry : PUSH (task name, true, true)
exit : REPLACE (task name, true, false)
TASK BODY

increment the lexical level

encry
PUSH (task name, false, true)

exit decrement the lexical level
POP until name = task name
POP

ACCEPT BODY
entry : PUSH (entry name, true, true)
exit : POP )

Figure 2-13: Stacking Rules

60




PROJECT DESCRIPTION

2.5.4.3 Symbol-table routines

Ada's visibility rules are supported by routines to
enter a symbol, to find a symbol in a named environment and
to find a symbol in scope.

Entering a symbol

Symbols are entered in the symbol table tagged with the
enviromnment in which they are declared. This environment is
specified by a 2-tuple consisting of the lexical level and a
linked 1list of the environment names on the stack when cthe

entry is made.

Lexical Level: The lexical level records the number of

static links that must be traversed to reach the main or
outermost textual level. This value is initialized to 0 and

altered only according to the stacking rules.

Linked list: The linked list contains all the directly
visible names stored on the environment stack at the time
the symbol was entered. Since the environment stack 1is
altered only according to the stacking rules, the list will

contain only subprogram, package, task or entry names.

Finding a symbol in a named environment

The caller provides the symbol's lexical level and the
specific envicronment to be searched. The routine searches

this environment and returns a reference to the symbol if it

61




PROJECT DESCRIPTION

exists.

Finding a symbol in scope

The caller provides the current lexical level and
environment., The routine successively searches nested scopes
until the symbol is found or there are no more environments
to search. It returns a reference to the symbol if it

exists.

2.5.4.4 Visibility example
These tools comprise a system which supports Ada's
visibility rules., The following example illustrates their

use.

PROCEDURE MAIN IS *
A : INTEGER;

PACKAGE MAIN 1 IS *
A : INTEGER;
END MAIN_ 1; *

PACKAGE BODY MAIN_1 IS *
M _1B : INTEGER;

BEGIN
A =1,
MAIN.A = 2;

END MAIN 1; *

& 00 YU

BEGIN -- MAIN
MAIN 1.A := A;
END MAIN; *

VAR

Figure 2-14: Example Program for Visibility Demonstration

Each number on the figure points to a region of the

text where the environment is of interest, and the asterisk

62




PROJECT DESCRIPTION

marks cthe application of one of the stacking rules., For
each number, figure 2-15 illustrates the contents of the
environment stack and all the wvariables entered in cthe
symbol table up to that point in the source text. The
example begins at point one, with a NIL environment and no
variables in the symbol table. Each new identifier
encountered in the text 1s entered in the current
environment, and the environment stack is changed only at
the marked points using the previously-derined stacking

rules.

This concludes the description of the thesis project.
Additional detailed information on the operation of either
the pseudo-machine or the compiler can be obtained oy
studying the PASCAL source listing for the system. Appendix
IV contains the listing of the interpreter program, but due
to the size of the compiler listing, it has not been
included. However, copies of the entire listing are
available in machine readable form on the ARPA net. Contact
the AFIT/EN Mathematics Department for further information.
The following chapter will describe recommendations for

follow-on efforts.

63




RECOMMENDATIONS

CONTENTS OF
ENVIRONMENT STACK VARIABLES ENTERED

ENV NAME PACKAGE DIRECT VIS VAR NAME ENVIRONMENT

> NIL NIL NIL NIL NIL
> MAIN FALSE TRUE MAIN 0 <NILD>
|
3> MAIN FALSE TRUE MAIN 0 <NIL> -
A 1 <MAIND ‘
&> MAIN FALSE TRUE MAIN 0 <NIL>
MAIN 1 TRUE TRUE A T <MALND
MAIN ! 1 <MAIN,MAIN 1> 4
A 1 <MAIN,MAIN_ 1) ;
¥
& MaIN FALSE TRUE SAME AS ABOVE .
MAIN_ 1 TRUE FALSE !
&> MAIN FALSE TRUE MAIN 0 <IL>
MAIN_1 TRUE FALSE A 1 <MAIND
MAIN_1 TRUE TRUE MAIN 1 1 <MALND .
A 1 <MAIN, MAIN_ 1>
M 1B 1 <MAIN, MAIN_ 1>
J‘,
(> “AIN FALSE TRUE SAME AS ABOVE
MAIN 1 TRUE FALSE
B> MAIN FALSE TRUE SAME AS ABOVE !
MAIN_1 TRUE FALSE |

> NIL NIL NIL NIL NIL \

Figure 2-15: Visibility Rules Demonstration




RECOMMENDATIONS

3. Recommendations

As time for the project work drew to a close, it became
apparent that several items on the 'do-list' would not ger
done. This chapter describes these deficiencies and also
describes some areas where continuation efforts could begin.

Since the project 1is composed of two major parts, the

pseudo-machine and the test compiler, the recommendations
are divided to reflect this,. The first section in the
chapter describes suggested improvements to the

pseudu-machine, and the last section describes sugzested

improvements to the test compiler.

3.1 Improvements to the Rseudo-machine

Known areas where the pseudo-machine can be improvad or
expanded include: providing run-time space allocation for
tasks, improving the system queues, improving the allocaction
of stack-frame control data, implementing exceptions,
implementing the dynamic~variable-space-access routines,
investigating the effects of Ada's enumeration 1/0

requirements and implementing mechanisms to protect data

subject to access by multiple processors.

3.1.1 Run-time space allocation
The current implementation computes a task's space
requirements at compile time. Thus, if a task calls

procedures that recurs: excessively, the precomputed space

65

ad.




RECOMMENDATIONS

may become exhausted, ‘If this 1is wunacceptable for a
particular implementation, consideration should be given to

a run-time space allocation scheme.

3.1.2 System queues

The ready and entry queues 1in the system are
implemented as linked lists with a pointer to the head of
each list. Therefore, adding a task to a queue requires
traversing the entire list to £find the list's end.
Possibly, the queues could be speeded up by adding a queue
tail pointer, but the average queue length could be so short

that this would not be much of an improvement.

3.1.3 Stack-frame control data .

The current implementation uses the same stack-frame
control data for tasks as it does for subprogram
activations., This results in several unused words in the
control data allocated to a subprogram. Some space could be
saved by defining a new stack frame specifically for use in

a subprogram call.

3.1.4 Implementing exceptions

Exceptions declared in a block or subprogram must be
allocated space for control information. Data, such as the
names of the exceptions handled within the block and the
location of the handler's code, must be available at fixed

or comp'itable orffsets from the BASE Teglster, An

66

¥ mﬂid. ____n_._._.n-vJ




Prm——

RECOMMENDATIONS

instruction to carry out the run-time actions of raising an

exception must also be written.

3.1.5 Implementing dynamic variables

No constructs that required dynamically allocated heap
space were 1mplemented. However, when they are, run-time
actions that will be required will include 1instrucctions to
load dynamic wvariables onto the evaluation stack, to store
the top of stack within the dynamic variable space, and to
locate and manipulate data within dynamically created task

objects. Once methods for allocating

ISE]

loading and storing
dynamic variables and tasks have been 1implemented,
consideration should be given to deallocation and carbage
collection. However, a minimal system should not require

this.

3.1.6 Enumeration 1/0

Ada's enumeration I/0 facilities may require the
addition of another data block to the stack frame and the
addition of another register w’ which to access it. This

area may be necessary tc *"~.. ‘he ASCII representation of

enumeration types declared within the associated scope.




RECOMMENDATIONS

3.1.7 Data protection

The data-lock control word was added to the control
data so that access to a task's stack frame could be limited
to a single processor at a time. However, since the
pseudo-machine architecture was simulated on a single
processor, a mechanism for checking and setting the data
lock was never implemented. Currently, mnone of the
implemented instructions check this word, although several

of them should. In addition to protecting data contained in

a task, the system's ready queue must be similarly
protected. This entire matcter requires careful
consideration.

3.2 Improvements to the compiler

Improvements to the test campiler must be based on its
intended use. This section considers two possible wuses of
the test compiler: first, as a basis for building a finished
compiler and, finally, as a tool in the development of a

production Ada to pseudo-code compiler.

3.2.1 Towards a finished product

Several compilation tasks were side stepped in this
project Dbecause of time restrictions. Four of these areas
include representation specifications, types, overloading
and separate compilation. Representation specifications

specify how types in the language are to be mapped onto the

68

¥

PR T




RECOMMENDATIONS

underlying machine (Ref 2 : 13-1). This issue was not
investigated. Implementation of types was limited to
integers, only. The addiction of user defined types will

sreatly increase the power of the compiler and should not be
overly difficult. However, implementing subtypes and
derived types <could be more sporting. Cverloading and
separate compilation are two interesting and probably very
challenging areas that will likely have a significant impact
on the structure of the test compiler's symbol table.
Separate compilation will have an additional impact on 1ics
code ceneration routines and will probably require a

comprehensive linker program.

As the compiler moves closer ¢to completion, more

thought should be given to improving the error tolerance of

the semantic routines and to polishing the Jdrammar.
Currently, the compiler checks for syntactic and semantic
errors until the first error is encountered. From that

point onward, only syntactic errors are checked. More error
tolerant semantic routines would allow continued analysis of
semantics after an initial error. The LR(1) grammar used in
the <test compiler's parser was originally obtained from
Intermetrics and has been slightly modified so that it is
more suitable for a one pass compiler. However, since
several productions are wunused, the grammar can be

streamlined further. This would result in minor increases

69




RECOMMENDATIONS

in execution speed and in minor decreases in memory space

requirements.

The following deficiencies in the current compiler have
been noted.

- Accept statements: Accept statements for an entry
of a given task may only appear within the
sequence of statements of the corresponding task
body (Ref 2 : 9-7). The compiler does not check
for this restriction.

- Package body variables: Variables declared in a
package body should not be accessible outside the
package. The compiler dces not limit such access.

- Initialization of variables: The compiler does
not handle initialization of variables.

- Testing: The compiler program has not received

adequate testing because of time limitations, and

some of the implemented constructs bave not been

tested at all. Be assured that there are errors

to be found.
3.2.2 For use as a tool

With minor improvements, the existing test compiler and
pseudo_machine could be wused as a tool to begin the
development of a production-quality Ada to pseudo-code
translator. The major improvement necessary to make cthe
test-compiler useful for this purpose is the implementation
of the ©basic structured types. In this category, records
and one dimensional arrays are almost necessities,

Additional constructs that should be added are enumeration

and access types. With these additions, sufficient power

7G

SRR

e o d ittt




RECOMMENDATIONS

should be available to write the new compiler in Ada without

overly limiting one's expression.

When writing the production compiler, the programmer
must deal with the limitations of the host processor. For
example, 1if the compiler is to run on a small machine, it
must be designed with this in mind. This means that space
saving techniques such as segmentation and multiple-pass

compiler design would probably have to be employed.

This completes the Recommendations chapter and also the
main body of the thesis. Pursuing this project has added a
staunch supporter to the growing ranks of Ada enthusiascs,
and I feel that Ada is something that has been needed for a

long time. More power to her!

71




31 BLIOGRAPHY

BIBLIOGRAPHY

1 .

1.

Barrett, William A. and John D. Couch. Compiler
Construction Theory and Practice. USA: Science
Research and Associates, Inc., 1979.

Defense Advanced Research Projects Agency.

Reference Manual for the Ada Prozramming
Language, Proposed Standard Documenct.
Washington, D.C.: Department of Detfense, 198C.

----- Requirements for JAda Programming Support
Environments, STONEIMAN. Washington, D.C.:

Department of Defense, 1980.

Fisher, D.A. A Common Programming Language for

the Department of Defense -- Background and
Technical Requirements. arlington, Virginia:
Institute for Defense Analyses, Science and

Technology Division, 1976. (AD A028 297).

Fox, Joseph M. Benefit Model for High Order
Language. McLean, Virginia: Decisions and
Designs, Inc, 1978. (AD AO053 032).

Harrison, Michael A. Introduction to  Formai
Language Theory. Reading, Massachusetts: Addison
and wesley Publishing Company, 1978,

Habermann A. N. and Isaac R. Nassi. '"Erricient
Implementation of Ada Tasks'. Pittsburgh, Pa:
CMU-C5-8C-103, Carnegie-Mellon University, 1980,

Honeywell, 1Inc. Fcrmal Definition of cthe Ada
Programming Language, Preliminary Version for
Public Review. Minneapolis: Systems and Research
Center, 1980.

Ichbiah, J.D. and others. Rationale for the
Design of the Ada Programming Language. UNew
York: Association tor Computing Machinery, Inc.,
1979.

Institute for Information Systems. PASCAL System
11.0 User's Manual. La Jolla, Ca: 1IS, 1979.

Myers, Glenford J. Composite / Structured Design.

New York: Van Nostrand Reinhold Company, 1978,

e ———

PR




BIBLIOGRAPHY

12. Shannon, Alr-ed. The LR 3vstcem. FORTRAN source

listing for che LR syscem. argonne, Illinois:
National Eneryg Software <Center, Version 61,
1979.

13. Wetherell, Charles and Alfred Shannon. "LR,
Automatic Parser Generator and LR(1) Parser. "
Livermore, California: Lawrence Livermore

Lagoratory, 1979.

14, Wirth, ©Niklaus. Algoricns o + Data Struc-ures =
Programs. Englewood S.lls, New  osersey:

Prentice-Hall, Inc., 1976.
15. Wirth, Niklaus. PASCAL . 3Source listing for
PASCAL S. Zeurich: Insticut Fuer Informatik,
1976.
1 APPENDICES
These appendices provide additional decailed
information on several topics. Included 1in them are a
summary of an early study on the economics of commonalicy,

background information on LR(1) parsing, a user's guide and

the PASCAL source listing of the interpreter progzram.




- [V D

DOD COMMONALITY STUDY

I. DOD Commonality study

In July 1977, DARPA tasked Decisions and Designs
Incorporated (DDI) to perform a two part effort: first, to
modify decision analytic models to predict the impact of a
common DOD high order language, and second, to implement and
run the models (Ref 5 : 1).

Decision Analytic models:

Three models were used to accomplish this task: EVAL,
which compared 14 attributes of the input languazes, SPREAD,
which generates predictive scenarios given data inputs from
EVAL and other sources, and DECISION, which shows the
effects of different decisions given the scenarios generated
by SPREAD and event probabilities estimated by the user.

Implementation:

The table on the following pagze summarizes the results

of the study.

Each column 1in cthe table represents a different
scenario. For example, column I illustrates the erfect of
introducing DOD (the generic name for the proposed common
language) in 1980 and achieving total acceptance of the
language by 1985. (Total acceptance is defined as the point
where all contracts for new software are to be written in
DOD.) Programs written in other languages are assumed to

continue tarou hout their lire cycles without rewrite, LZacn

74

i
l
I
)3
E i




*qog e85 y21ya jo duo
‘903en3usl 1n0j Juomv PIPIAJP 23V 93110 MIU TIv yYopym uy 1e24 8y 1924 Puodas Iyl

R —

COMUIONALITY uTUDY

LGDL

210un *XY 3SYD 103 1430xd {@og UT IV 811VI MAIU TP YOIYA UJ 1UIL @f Ieay puz
: U0IINPOIIUL JO JUAR OF 1wag IN]

v 06L°9T 61r°92 fev'sz Tee’st Le9'ce LeL’or 142 M 24 ort'tez Tes‘ez Tvi0L
€9t 962t €Tr'e [1 24 0z0°‘?Y L'y s$8L° srz’e 8L’y e’y SE61
8L "'t [ 14 S 4 96€ ‘L 896'1T [ 72244 ‘e €62°C Lee’e 13: 184 4 $661
0’ 60C’'t oS’ €952 [ 21 0932 I AR08 4 (X4 24 e’ [ 2454 661
(413 T92°Y 1Ir’e 02¢°L (o't 6N’ L't 562°'2 ‘e T1e’e 6et
ecL [ LR34 L2 {4 cLe’y 98€ ‘1Y rz'e 9z¢ 't (1]} G 4 "ME‘T €9C’'L TE61
959 [zo‘t 696°1 [ 241044 L80°t [24: 2 086°T 6cL’'y 12194 ¢ 910’2 1661
829 116 9zL't teL’t 198 0061 9891 1Y 802°'Y "e'y 0661
174 148 ] 019’1 (1784 ¢ 6L 88r'Y 0Ls‘t 10e't 186 169°T 68617
10t "e 00S°Y €90'Z 0oL L10°1 1s°t ez’t 609 [TY24 anretl ”
(11 ] (14 ] stz’'t oL’y (14 ] teL (11241 L60°'Y 6Ly 1951 (LT3
159 98¢ Lgo’y 868t 0r9 959 €Tt Y3 629 66C°Y 9861
"s 19 118 €1’y €ss 109 190 9LL €SS 90°Y S86Y
Les (131 069 186 91s €€s ore 8L9 91s L1é 86T
e Ltes " nre [£1) (X3} e [A%) (41} (KT} tant
€9 SY9 TS89 Ts9 %9 59 "o "9 Ts9 LoL i1 2
ts9 *S9 59 59 [13] 113 ] vs9 *59 159 9L9 1861
142 Le9 Le9 L.9 Lc9 Loy Lr9 LeY Le9 eto 0861
98y 8Y 1417 141 14:1) 14:1 14:1] 141 1417 €0y 6L61
6L 9Ly 9L E14 9Ly 9L gLy L1134 LY Ly 861
(1114 Loy Loy Loy Ler Lar L8y Ley (3:1} Ley LLet
aeq oN €8-0861 $8-2861 £8-7861 26-1861 88-€861 98-186T 06-0861 06-$86T €8-0861
aog ’
*Suuvg
) 4 X1 ITIA 11A IA A 111 11 1

T e e A P T A0 PPN M VIO B & 4k =z




20D COMAONALL'TY STUDLY

row in the table represents a different year as labeled ia

the lerftmost coluan.

Tne data in the table represents willions of Jollars
saved as compared to a baseline of exclusive use of assembly
language. Thus, any model that considers the use of nearly
any d0L will exhiobit savings. For comparison purposes,
column X models the current situation; that of "no-change"
in DCD 5000.31 estimate (kef 3 : 5). are estimated usin; a

software expenditure of 3.2 billion dollars per jyear.

The data 1s provided so that tne recader can make nis
own conclusions. The author stated that for a 5 year
introduction period, Jdelay of the introduction from 1920 to
1967 reduces savings by about 1.5 billion per year. He
concluded with

It is recommended that tne DOD single common aih
order languaye bLe introduced as rapidly as possible

~ithout penalizing technical (quality or
acceptabilicy... (Ref 5 : 8)

76




Lr{1) PaksI.G AUTOHATOL

II. LR(1) Parsing automaton

An  Lik(l) parsing autumaton 1s a machine taat can
recogynize any sentence 1in a particular deterministic
language, and conversely, reject any sentence not contdined
in that language. To define the machine, tie term lun,ua e
will be defined, and a sample lanjuage introduced o
illustrate tne woperation of the machine, Then, Cie
components of the machine and tneir operation will ve

agescribed.

a lan,uage consists of a collection of symbols, called
an alphabet, arranged according to a set of rules. These
rules are called productions, and the collection of all

these rules, or productions, is called a _jrammar.

The alphabet of the sample languaje includes only tne
tollowing three symbols : 3kiaD, EATS, and JOHN. Tne

production rules whicn jovern tneir placement are listed

below.
1. SENTZHCLE :=  SUBJECT VERB OBJECT
2. sUBJECK = JOHU
3+ VERB (= EATS
4. OBJECT 1= BREAD
(The symbol '::=' means 'is defined as')
This yrammar consists of four productions, Lacn

production consists of two parts, a lett-hand side and a

right=-nand side, separdated by the symbol '::='., The number

77




Lr(1) PARSILG AUTOMATGU

of symbols on the rignt-hand side of a production is called

tae lengta of that production. For example, the length of

oroduction 1 is 3. Jdote that tnese productions introduce
some new symbols. The symbols StdTodCi, SUBJECT, VeERs and
OBJElT do not appear in tne alphabet of the lang uage but
are necessary to describe iIntermediate representations of
the sequence bein, generated. Also note tnat only; one ot
these new symbols does not appear on tae right-hand side ot
a productcion. This symbol, SEJTENCE, is called tne start

sytwol of the _rammar.

The start symool 1s a representation or all ctne
possible strings that can be ,enerated by the jrammar, In
this case, tie start symbol SENTEICE is defined as a SUBJLEUT
tollowed by a VEXS and tnen an OBJECT. Similarl,, a subject
1s defined as JOHli, a VEXKB as £EATS and an OBJECT as  3icapd.
Therctore, in tnis _,rammar, the start symbol represents tne

single strin,; 'JOHU EATS BREaD'.

To recognize a string in a language, the automaton nust
reconstruct the particular sequence of derivations toat
bey,an witn the start symbol and resulted in tne strin;. It
the automaton accomplishes this successrully, the striag 1is

accepted as part of the language; otnerwise it is rejected.

The mwmachine contains four components, an input device,

an output device, a memory Jevice and a control module.

7o

b

.




LR(1) PaxsIiG AUTOMATOL

Input device: The 1input device consists of a tape
containing tne sentence to be checked, and a head to read
the tape. The read head scans the sentence from left co

rignt and provides the machine witih one symbol at a time.

Qutput device: The output device consists of a blank

tape and a write nead. The machine uses the output tape O
store a nistory of the productions used ¢to analyze cthe

sentence.

sdemory device: The machine's memory Jdevice i3 a stack.

kacn time tine machine accesses the stack, it stores two
pieces of information. First, it stores a symbol from tne
orammar, and then it stores a table or 1its representation
used to define tne machine's next action. These two items

are referred to as a daca pair in tne rest of tnis appendix.

Control: The final component to discuss 1s the control

aodule. The control module directs the operation of the
machine's only two functions shich are shifts and
reductions. It determines which of tnese instructions to

execute by entering the table stored on top of the stack
witinn the next symbol on the input tape as an argument., It
the table indicates that a shift snould be done, the control
unit stacks the look-ahead symbol and the table whose nane
1s stored wita the shift instruction. Lt tunen advances tne

read nead to tae next symbol on the input tape. It tne

79




Lx(1) PARSLJG aUTLMATOU

table indicates that a reduction should be done, the contrul
anit writes the indicated production number on tne output
tape and looks up the length of the production. 1t removes
tals number of data pairs rrom the stack and then consulcs
the uncovered table. This time, instead of using Cthe next
symbol rfrom tie Lnput tdpe, the control unit uses ciae

lefc-nand side of tae production to enter the table.

lo accomplisn shirts and reductions, the control unit
Tist KnOW  the  productions of the _ramwar and also the
contents 't tne tavles. Therefore, tiae structure of tae
control unit must include a representation of this data in
some  rorm, Assume that the control unit «nows the
sroductions which make up the sample grammar and also tae

contents of tile tables illustrated in the followin_ rigure.

SculudCe | sUbdJucT | VEKS | OBJECT | JOud | LAlS | BREAD -

LS Swet, T SniFT, TS

< ACCECPT Swrr, T3 Saier, T2
N Reouee, 2

) Reowee, 3
1o SwiFT, T8 SwieT, T7

'—'is a special symbol indicating 'end of input'.

Figure 3-1: Tables rfor tne LR(1) Parsin, automaton

The machine Legins witn tavle TU on tie stack and  with




LRyT) PArSIUG AUTOMATOU

tne Lnput unit looking at ctne first symwol on the input
tape. [he machine will actempt to reco,nize tne seyuence of
symools 'JOHN EATS brbaD' as a legitimate string in  ctae
langua,e specirfied by the sample ;rammar's production rules.
[he wmachine c¢ncers table TO with tne first symbol, JOud, and
finds the entry 'shifc,T1'. On this shift move, tae control
unlct stacks tne input symbol, JOilii, and the new tavle found,
[1, and then reads the next symbol, EATS. The current stack

configuration is illustrated in the followin, Li_ure.

INITIAL STACK CURRLENT STACK
LI s S AL AT ITIIINIIIEND}
. . i o
TOP —————a Y i TO
; JOoda
TOP —um L' |
(TU ; JOHN ©EATS BREAD H ) (IO ; <JOud,TV1>; LEATS 3KEAD ™ ;

a

Figure 3-2: Kesult of tne 'sShift, T1' .love
The symbols within tne parenthesis on  the diagram
constitute an instantaneous description of tne macnine's
state. The symbols before tue first semicolon represent tae
items stored on the stack, the symbols between the
semicolons represent the unprocessed portion ol the input

tape, and the symbols after tie last semicolon represent tihe

contents of the output tape, The left-most word of the
input tape's representdation, marked by A in tie diagraa,
is the piarser’s current look-ahead token. Collectively,

31

)




Lk(1) Pa’dsl.idG auTodalon

these iCems coapletely specify tue wdcaine's current

coniiguraciun,

Presently, the items TO, JOHN and T1 are stacked and
the look-ahead token is EATS. The control unit enters table

Tl  witn the symbol £AT5 and finds tne entry 'reduce,3'. On
this reduction, tne control unic writes tne number 5 on tae
output tape and looks up the lengtii of production 3.
Production 3 is 1 symbol long, so the control unit renoves |
datda pair from the stack, leavin, tne following
configuration:

IINIINIIINIVINIYIIYi

TOp ——a TO

(TO ; caTs brbkaD 5 20)

Figure 3-3: Intermediate result of the 'weduce, 3' .ove

The control wunit enters the table on top of the stack
with che leftiand side of production 3, which is the symbol
sUsJaCT. Lt Linds the entry 'shift,T3'. The confijuration
ot tae wachine after this move 1is 1illustrated in the

following diagram.

The machine continues in tiis manner until it reacnes
'ACCEPT' or it cannot Jo a transition or a reduction. [Li 1t

reaches 'aCCEPT', the input string nas Dbeen successtully




Lk(1l) PARSLNG aUTOMATON

Yo 7 /v//’
T0
SUBJECT
TOP ——w» T3
(L0 ; <SUBJECT,T3> ; LATS BKEAD 2 )

Figure 3-4: Final result of 'rReduce,3' vlove

parsed and, thus, is a part of the languayge specified Ly tile
orammar. I cthe macnine cannot do a transition or 4
reduction, tae input string is not part of the language and
it is rejected. fne following fijure contains tae
instantaneous descriptions of the machine for every step

required to reco,nize tae string 'JOil EATS Briad'.

bGLA

(TU ; JOHU ZATS BRoab i)

(Tu, <JOHN, T1> ; LaTs BREAD ;o)

(Tu, <SUBJECT, T3> ; LATS BrEAD ;2)

(Te, <susddect, T3>, <EALs, T5> ; SREAD ;<)

(fy, <8UBJIECT, T3>, <VERB, T6> ; BRiaD i 2, 3)

(T, <SUBJECT, T3>, <KVERB, T0>, <8Rkabd, 17> ; ;<. 3)

(Tu, <susdicCl, T3>, <VERB, To>, <OvJECL, To>; <, 3, 4)
ACCEPT

Figure 3-5: Acceptance of tie String "JOHW EATs oreAd"

This concludes the description of the structure and
operation of an Lr (1) parsing autonaton, altaou,n  its
operation may seem overly complex, tne automaton is well

suited for «computer Laoplementation. In tact, such an

dutomaton can be _enerated automatically by computer iven




La{l) Paxaslds alTOuALON

the _rammar to be parsed (xei 15). T[lals _reacly simpiiries

the constructiva or command lanjuajes and compilers.

P N Y T = e

|




Lskx's GULBLE

III. User's guide

This appendix describes the input accepted oy tae test

compiler and tne output which vresules, several exanuple

prosjrams are also included.

Inpuc: Input to taoe prosram saould be an ada text file
whose constructs have been selected frowm tue  iLmplementced

subscct. Lanjuaje constructs that nay be used to coapose

input programs are listed below.

1. Integer wvariables. Sumver declarations and
variable initializations are nct iLmplemenced.

2. rackage declarations.,

3. Procedures and functions witn parameters (aode
types may be specitied)

4, Task dJdeclarations.

5. Selected components may De used Co open
visibility €0 ovjects that are witilln scope Jut
whicn are not directcly visiole.

o. JMost ilnteger aricuametic or boolean expressions
may be used includin, tnose using saort circuilt

conditions. However, the tollowin; list ot
operators has not been imwlemented: KL, *%, o,
IH.

7. Tne followin, stacements may be used:

a. Assignment
D. Procedure, function or entry calls
c. kExit

Jd. return

e. 17 Tuwd elollb wlbho




AD=A100 796 AIR FORCE INST OF TECH WRIGHT~PATTERSON AFB OH SCHOO--ETC F/6 9/2
PRELIMINARY DESIGN AND IMPLEMENTATION OF AN ADA PSEUDO=MACHINE,.(U)

NL

MAR 81 A R GARLINGTON
UNCLASSIFIED AFIT/GCS/MA/81M-1

A |IIIII||IIII||IIIIII|IIIII|IIIII|IIII||IIIII|IIIII|IIIII




USER'S GUIDE

II1I. User's guide
This appendix describes the input accepted by the test
compiler and the output which results., Several example

programs are also included.

Input: Input to tine program stould be an ada text file
whosa constructs have been selected from the implemented
subset. Language constructs that mnay be used to compose
input programs are listed below.

1. Integer variables. Number declarations and
variable initializations are not implemented.
2. Package declarations,

3. Procedures and functions with parameters (mode
types may be specified)

4, Task declarations.

5. Selected components may be used to open
visibility to objects that are within scope but
which are not directly visible.

6. Most integer arithmetic or Boolean expressions
may be used including those using short circuit

conditions., . However, the following 1list of
operators has not been implemented: REM, **, &,
I N . 3

A

7. The followin, statements may be used:

a. Assignment

b. Procedure, function or entry calls
c. Exit

d. Return

e. I¥ THEJ ELSIF LELSE

35

i SSumpis e




r-—-————————————-—— -

USER'S GUIDE

f. Accept

o loops (except FOR loop)

Output: The output of the program is dependent on a

specially derfined pragma. This pragma was added to allow

more direct control of the program throughout its

development. Its format is:
PKAGIA TOGGLE ( <OPTION_STRING> ),

where <OPTION_STKIJG> is composed of selections from tne
following 1list of options: ZXecCUTE, TRACESTORE, PRINTCODE,
TRACEPARSE, TKACETUK. Jultiple selections must be separated

by commas.

All of these options are initially off. To select an

option, list it in an option string, and the compiler's

output will be as defined below:

o= - sV R

EXECUTE: If no errors are detected 1in the input

program, tne prosram will be executed.

TRACESTORE: TRACESTORE will do notning unless EXECUTE
is also selected. If EXECUTE is selected, each value stored
during the execution of an ISTOKE or ENTISTORE command will

dDe printed.

PRIWNTCODE: The code _enerated by the compiler is

formatted and printed.

36 y




USER'S GUIDE

TRACEPARSE: Each transition or reduction made b, che

parsing automaton is printed. This listing is fairly long

even for a short program.

TRACETQOK: The representation of each token passed from
the scanner to the parser is printed. This represenc.:ion
consists of the token's vocabulary index as output from the r

automatic parser generator (Ref 13). .

The following examples illustrate the effects of select- '

ing these options given a simple input program,

ADA-G COMPILER
AIR FORCE INSTITUTE OF TECHNOLOGY F

-- THIS EXAMPLE ILLUSTRATES THE COMPILER'S OUTPUT JITH !
-- NO CONTROL INFORMATION.

PROCEDURE MAIN IS
A : INTEGER;
BEGIN
A := 3,
PUT (l' A= ");
PUT_LINE (A); i
END MAIN;

OWRWIO WV H W —

—~—

ADA-G COMPILER
AIR FORCE INSTITUTE OF TECHNOLOGY

1 -- NOW THE SAME PROGRAM IS INPUT TO THE COMPILER WITH *

2 -~ THE EXECUTE OPTION SELECTED.

3

4 PRAGMA TOGGLE (EXECUTE);

5

6 PROCEDURE MAIN IS

7 A : INTEGER;

8 BEGIN

9 A := 3,

10 PUT (" A= ");

11 PUT_LINE (A);

12 END MAIN; .
A= 3 3




ADA-G COMPILER
AIR FORCE INSTITUTEZ OF TiCHNOLOGY

-=- OPTION PRINTCUDE PRINTS THE CUDE GENERATED 3Y THE COMPILER
-=- FOR THE INPUT PROGRAM. THIs OPTION IS SELECTED LN THIS
-- EXAMPLE.

PRAGMA TOGGLE (PRINTCODE);

A : INTEGER;
BEGIN

A = 3;

PUT (Cl A = H);

PUT_LINE (A);

1

2

3

4

5

6

7

8 PRrROCEDURE HAIN Is
9

0

1

2

3

4 END MAILN;

— ot b b ok

*%% PRAGMA PRINT_CODE ¥**

INDEX MNEMONIC LEVEL ADDRESS

0 JMp Q 1
1 INCT 0 18
2 ILOADCONST 0 3
3 ISTORE 0 17
4 SPUT 0 5
5 DATA 0 32
6 DATA 0 65
7 DATA 0 32
8 DATA 0 61
9 DATA 0 32
10 ILOAD 0 17
117 IPUT 1 Q
12  RETURN 0 0




e S

PUT_LINE (A);
EdND MAIN;

1 -- NOW THE TRACESTORE OPTIUN IS SELECTED.
, 2 -= THIS OPTION WILL PRINT THE VALUE STOKED DURING THE EXECUTION
f 3 == OF THE ISTORE INSTRUCTION (INSTRUCTLON NUMBER 3 IN THE PREVIOUS
ﬁ 4 -- EXAMPLE.
5
} 6 PRAGMA TOGCLE (EXECUTE, TRACESTORE);
{ 7
3
9 PROCEDURE MAIN IS
10 A : INTEGER;
11 BEGIN ;
12 A := 3; g
13 PUT (" A = '");
14
15

*%% PRAGHMA TRACESTORE *** ¥
EACH VALUE STORED DURING EXECUTION OF AN ISTORE COMMAND IS LISTED

3
A = 3

ogror ot a8

o

aDA-G CO:PILEK
ALK FORCE INSTITUTE OF TECHNOLOGY

- END MAIN; !

-=- AS YOU WILL SEE, THE PARSER IS VERY BUSY EVEN WLITH A SIMPLE
-- EXAMPLE LIKE THIS.

1 -- NOW THE RATHER LENGTHY OUTPUT GENERATED BY THE TRACEPARSE

2 -- OPTION 15 DEMONSTRATED. EACH TRANSITION OR REDUCTLON

3 -- MADE BY THE PARSING AUTOMATON IS PRINTED. TO LIMIT THE

4 -- LENGTH OF THE OUTPUT, A SHORTER PROGRAI{ IS INPUT AS FOLLOWS:

H == 5
6 -- PROCEDURE MAIN IS

7 =-- BEGLIN

8 -- NULL; !
9

0

1

2

3

— b b b

89

;
¢




14

15 PRAGHA TULULE (TRACEPARSE);

PRODUCTION
TRANSITION
16

13 aJdD TRANSITION FROUM STATE 2 TO STATE 7
FROil STATE 7 TO STATE 41

17 PROCEDUKE wiAILN IS

PRODUCTION
PRODUCTION
PRODUCTLION
PRODUCTION
TRANSITION
PrODUCTION
TRANSITION
PRODUCTION
PRODUCTION
PRODUCTION
PRODUCTION
PRODUCTION
PRODUCTLION
PRODULTION
TRANSITION

13 BEGLN
PRODUCTION
PRODUCTION
PRODUCTION
TRANSITION

16 AND TRANSITION FROM STATE 2 TO STATE 8
15 AlD TRANSITION FROM STATE 2 TO STATE 9
385 ..iiD TRANSITION FROM STATE 9 TO STATE 46
377 adD TRANSITION FROM STATE 2 TO STATE 6
FRUc. oTATE 6 TOQ STATEZ 18

274 4D TRANSITION FROM STATE 6 TO STATE 34
FRG. STATE 34 TO STATE 11

8 D TRANSITION FROM STATE 34 TO STATE 113
280 «aiD TRANSITION FROM STATE 34 TO STATE 112
440 AND TRANSITION FROM STATE 6 TO STATE 35
284 AND TRANSITION FROM STATE 35 TO STATE 116

282 AND TRANSITION FROM STATE 116 TO STATE 207

275 anD TRANSITION FROM STATE 6 TO STATE 37
271 AND TRANSITION FROM STATE 6 TO STATE 38
FRO:l STATE 38 TO STATE 117

276 AND TRANSITION FROM STATE 6 TO STATE 39
25 AND TRANSITION FROM STATE 39 TO STATz 119
441 AND TRANSITION FROM STATE 6 TQ STATE 40
FRO:l STATE 40 TO STATE 104

19 NULL;

PRODUCTION
TRANSITION
PRODUCTION
PRODUCTION
PRODUCTION
TRANSITION

204 AND TRANSITION FROM STATE 104 TO STATE 195

FROM STATE 195 TO STATE 313

219 AND TRANSITION FROM STATE 195 TO STATE 333
208 AND TRANSITION FROM STATE 195 TO STATE 340
202 AND TRANSITION FROM STATE 104 TO STATE 197

FROM STATE 197 TO STATE 341

20 END MAIN;

PKODUCTION
PRODUCTION
PRODUCTION
TRANSITION
TRANSITION
PRODUCTION
PRODUCTION
PRODUCTION
PRODUCTION
PRODUCTION
PRODUCTION
PRODUCTION
ERANSITION
PRODUCTION
PRODUCTION
TRANSITION

200 AND TRANSITION FRUM STATE 104 TO STATE 198
259 AND TRANSITION FROM STATE 198 TO STATE 343

258 AND TRANSITION FROM STATE 40 TO STATE 120
FROM STATE 120 TO STATE 209

FROM STATE 209 TO STATE i

8 AND TRANSITION FROM STATE 209 TO STATE 113

280 AND TRANSITION FROM STATE 209 TO STATE 351
279 AND TRANSITION FROM STATE 209 TO STATE 352

277 AND TRANSITION FROM STATE 6 TO STATE 36
3783 AND TRANSITION FROM STATE 6 TO STATE 20
380 AND TRANSITION FROM STATE 6 TO STATE 24
372 AND TRANSITION FROM STATE 2 TO STATE &
FROM STATE 4 TO STATE 13

4 AND TRANSITION FRCM STATE 2 TO STATE 5
3 AND TRANSITION FROM STATE 2 TO STATE 10
FRQ:l STATE 10 TO STATE 48

30

e e
Py




d
| SOURCE LISTLNG !‘
i :
% IV. Source listing
i
]

;
y

T e g W= T T




i e ————— s - - - —— e L <A S AN S SO it s i A it

-

6

(3 SAXAANTx) SNANAINT ¢ ASVAARAL MIAAIWVIAR ‘T “NLADAL NIAMAN a¢
(xNOSSINONd HALIOV-QHAILVINHISy) SHADAINT P MOSSANONIINANND LS
THOTLATNASAAANTHOVE A0 [SHOSSANOIANNN* 1] AVIIY : MOSSANNN4 9¢
CIONVISSTIAAY A0 [SATLINOTAA] AVMaV @ xavad Gf.

SMANAINT A0 [AZISAMORAL * 1] AvNNV & § 9

WYA 1%

_ rd%

CCNOTIATHNSAA ANTHOVHy) aNT L€

ALNDANA 01 NOTIOMNIGHT ISVIx)  “WADALNT ¢ INNODT Of,
Ge@I0DAY HOTIVATIOV MSVI O MIdx) T39INVNSSANAAY @ gOCINDINND 67
$(A10TASN9) ¢ ATVIS 37

(xONTIAANASNONY) L7

GOIALSTIONTN NOTIONALSNT.) ‘NOTIOMMISNT : nl 97

(xVAINTIOL NOVIS J0 d0Lx) SAONVNSSANAAY:L 54

(xTVNI MOVLS TATIOV 0, MIds) ‘A5vY %

(£¥TINIOL JvAy) ‘dvau €7

GAITINNOD IVINONdy) ‘ad (RSWALSINTIy) [4&/

GY0NTY = NOTIJdTNOSAAANIHOYR 17
16D = SATLTIOINA nz

AdAL 61

al

7 = 0An0A 1 = OVaavA ‘0 = 0RIVOT A

'C = AZISAVVIIANING 91

C(xAVVNI RVMINA AT 40 NOIIJATRDSHAx) St

12l

Ol = ORWINT ‘G| = OMMNJIAY ‘& = ONIATIVD ‘fl = ONDOIVIVA 71 = O4dVan £1
te= OWNIT 'Ol = O3FsVAL ‘6 = 07Sve ‘e = 3401 Al

L = OALINOINd ‘9 = 01dA7X3d ‘G = 0J.IVM y = QINV 1t

o= 0OVIINGVI ‘'z = 0d ‘1 = o INa ‘0 = OWMITIS o1
(090039 NOTILVAIIOV NSVI "ML J0 NOILATINDSAAx) 6

(xNOLLVINKIS AHL NI ANTISAKIL e}

¥Ad aALNDAXT SHOTINNNISNT A0 WAAHNNL) G = HIONATNOIINNAXA L

(x1ALSAS ANI SAZIIVIIINT HOTHM WOSSADONdx) 1 = MOSSADOAIANYWING 9
(£SMOSSIANONd VALSAS A0 HAGIINNx) € = SIOSKANONANNN 9

ISNOD Y

(x 0 TVADA O ASTVA J0 QU0 ANT SAVNINDAN NOTIVIAJO ¥Adovd  °* (ASTVA) a0 ¢
J0 ANTIVA FAHRT, NO INAANTLAG ST SYOLVNAL0 TVHOIIVIAN AHL JO HOTIVIANGWIINT.) 7
TIANAMAINT naanond |

AMTLSTT ADANOS WALIANINAINT




C(xNOTSSYY)  ana a9/

(LNINOQSADONT HWI.TMx) N3 G/

0 o=: IMNCDT VA

DIIANSVI = 9OorInmung £l

PASNY = AIvIQ 7L

Todvar + MLANSYI] § =@ 4van 1L

TAANT 4+ WIANSYI) § =@ 1 0.

LTOMSYE + MLAMSYI) § = Asvd 69

{ODd + MIANSYI] § = 0d 39

NTIH3IT o0 [HNMI0SSANONd ] NOSSHIONS NI IM L0
(s MIIMSVI, A9 01 AFINTOd FALWINANOVIS JHL 99
MT aMIOLS ST VIVA aMInday auy -- YOSSHI0Nd TNl A71IVILINIg) G9

9

CTONNTT + wira¥svl) s =: [arvidh] aavaw €9
C[AvvND ] ZavYAN =@ SLLANSYI 70

(700D SIT HOMNA WSV NAAIH AN INTTINNx) 19

N1979 n9

(G300 NOTIVATLLIOV JSVI O %Idx) WA93INT @ MIIISYL  MVA 66

(VAT MOVIS 2

SOISYI AHYL NI Aaavors ST VIVA NOTIVZIOVILINT AN *NOVI THI d0 Jpeng LG
NOVIS AHI 0O SINTIOd HOTIHM WMA9FIINT NY X9 0313T07AdS ST YSVI AHL  “HOTLNDAYA 9G
MIHAT OL RWVSSHANAN VIVA THI HILIM NOSSANOMNI NAAIDH ANT SAZTIVILINT NV 66
SLIVM JT1 ANM ANAND THT WOMT MSVL MAATO NI STAOWAN NOHISSY AINNAGAI0ONdx) v1e
TOIAOAINT ¢ HANMOSSADONA ¢ SATIINOINA © AVVMDY  POTISSY 1ANAAD0Nd 19(

rAS

16

T(ASVAANTAx)  aM3a 0%
ASYI VAL = ASVAANTI 6%
T THMR)  abq Ry
1 = A1 =: A3 LY

f[asvaarall s = aacvadrmy, 9%y
NIDAE 00 0 < AT ATT1UM Gy
N1938 Yy
(VTS UL NMOO SWMTN 1%

DLIVIS AT, AUVAIDIOVIS THI J0 HASVE AuT SNNNI™D ASYIONTII NOTIOMNIy) 7
TMANAINT 2 (EAONINT P ASVAIUAT CAYT) ASVAANLI BHOTIONNg 1y
oy

(xOVId NOIIVINKIS ATVYNTIINAIL) 'NYITO08 ¢ NOTIVNTINMAL 6F

ONTLCTT aAaMminns MHFLANGNILINT




(250

(ISYYL TINATAHNSx)  HI1DAg 711

£l

LRNOSSINONAATAT NOTIONNIx)  and Al

0 o=t 3ossAIOONANTOT |

ckada fol ot

YAARTd = ¥OSSAN0AdAT0T 601

MANL annog a1 901

Y1+ YAONTId =@ YAarid L0}

817 901

an¥L =: annod G0l

NAINT 3101 = JIVIS  [Xaantd]l ¥90Ssaooud 41 701

oa (@hinod 1oN) anv A;;oonguoxmz:z => XAGNTA) ATTHM £01

Y= YAANTd fASTIVA = annod w01

N 197N 101

THYAT008 ¢ annod no1

THANALNT P XAANTd  MVA 66

36

NTA JT ¥MOSSANONT F7aT1 ISHNIS ARL A0 MAGWAN AUT SHYNITY NHOTIONNA any, 16
"MOSSADONA WALSAS AT RV NOJ SANIAVIS xonngqozm 701 ROTIONNIx) 96
MANNT ¢ NOSSANONIATIAT NOTIONNA G6

6

C(ASVI ONTIIVMx)  aNd €A

NAMIVIE = NSVINNTYIVM 6

T o= MAMAVE = NAWHVIY Od 0 = [MAMIVE] AQYAN TITHM 1A

(xANAND ALTIOTHN JISAUOHTH AU NLIM UONVAS AHT, zHJ4n¥v 6 = qANNYY 06
1197a 6%

SGATLINOING ¢ NAMIVRR WVA 09

[a)

5]

(xYSVI ONTIIVM XINOTNA-ISANNTH AHL J0 WATHAN ANAND ANL SiINNLIT ANy 99
(1SAM0T ANL ST 1 ALTNOTINA NV ISTHOTH AHL ST 6 ALINOTIVd AMNTHM) G
ALIMOTIHA J0 VAMMO NT SANAND AAVAN THI SAHONVAS JSVI HHILIVM NOTIONNAx) 48
(SATLINOTINA : WSVIONTIIVM NOTIONNI £Q

Az

GeANAND AQVAN ANRT NT ONILIVM Y TVYHI SYSVI ANV 71707 VY 19

IVHI SNOSSAIMId Y AHL SY OHOT SV QI SANNTINODY ONTITNAIANNS 08
*SUSYI ANTILIVA O SHOSSANONd 101 SHHISSY ATNATHIS TANATI0Ndx) 6!
LATNAANDS INAHIONJ Q.

L1l

NNTILSIN

IDANOS NHATAINANAINT




fASNE = ALVIS

. PAZTSINOPAN = VAN
0=t nd

m_ =! "IQVG

0 =% 1

MTOAT 0a [NOSSADONI VRTINS ] NOSSHAIONd TIITM
(NOSSADONT ANYHTING AZTTVILINT:)

AT = ALVIS {11 WoSSANONd 00 SUNSSINONIUAN O | =t T ¥0Jg
(271107 O SNOSSAIMI 1TV A0 AIVIS 17%%)
(xITIDIAINTIL)  NTIDTS

$(xA0AND MT ATINA) anq
TAVVNAY =: [ALTHOINA4] AQVAN
(xAJdHA An3andy) HAS77
(x1nAND NI SYSVIx) NA
TAPVEAL =: [OWNIT 4+ MI4VAL) S
(xA0AND AN NT NSV 1SYT AL O SINTOd MON MILJAWALy)
CTOYNTT 4 MIAWAL)S =@ NIJWAL
0a 0 & [OMMTT + MLAWALIS FATTHM
TALINOTINGY 2avay = WIJdWAL
(£3030D 1'T SUSVIx) NIOAG NAHL 0 <> [ALINOINAY Ravayw 31
0 = [ouNIT + AVNALS
NTNAY
(070D AQVAN AATATOAIS NI NT L AUWIAL, YSVI SHIINT DNTMAINT Aa3na3n0Nds)
COIA9TINT 2 ALTHOTNG  “FTWVIIL) DN TIAINT A8NaA0Nd

T (xMANL)  and
SAUOMKAL + WIAVAH =! ¥I4Vvan
1+ MIAVIN = gMAN
N T
MANAINT 1 NADAINT ¢ SAYONWAN  CNAOAINT  UIAVAN AVA) dMAN NOTIONAA

J._Q .—:J J&n.v 331.,_

\.d
f‘-..
~4oaoggozm443H.za<ﬂuda<3vzuunn<
0a (0 < NSVIONILIVM) anuvy (0 O 4o:nggo~mu4:qv ATTIM

IMNTLSTT ADANOS

161
nG1
oY1
°h|
i
ULA
Yl

VAR

651

NALANANUINT




96

(xINdIx)  ann

— - .d. = 4
COI11S) Py Tam
aeq

({118) ar1Im
CeMYATAN AOVTINVD TNOPLTM I0ds) HHAUL 0 = T3A°7 J1
(LMOVIS AT A0 40T B0 TTVA TP TEdx)  BIone o Indl

TN TY 0 oapd
Ti+r]s = ugavy + (Isvg 1IA37) aavaantals
(141 13) ava

NTHIN 1 1A01

(2 SNOTIVIALO O/T x)

A0 40 ASV)
=t TMNONT ‘L + 0d =: Dda  [0d] Aa0n = ¥7
yadan
00 VT ‘[NOSSANONATHAMINN ] YOSSANONd HIIM
NTOT9 00 NOTIVMITINAL TON 71 THM
AQIVA = HOTIVMTINAL,
(AATIOV TOSSADONA AMVHTIA - NOTIVINHTS BINAT %)

: (o] xavaw
1 = 1 W03
Z2YTCTIINT )

m—u
0 = [1] xavai oa 6 O
(xANAND 2QVAN A

INOSSADONARAIVHTIA =3 NOSSADINNAINTINAD
POAI0SSTNONd AMVRTNA HITMx)  and
(xXTd%) 6 =: [OALTNOTAI + VA ]S
(2175 V%) L = [OOVIINSVI + Asva]s

0 = [1]8

00  AZTSAUMIANSYI 0L | =: T W04
(xFUVHANOVIS ANL AZTTIVILIN )
Y1o=1 0CINTINND
0= INNODT

061
671
2o
21
991

9l

731

cat

(48!
12t
nat
611
YA
L1y
91
QL
il
LA
A}
121
0Lt
691
el |
(91
991
Gal
VAR
£91
9l
191
0ol
661
861
LG
961
SG1
VA
£61

MIIZTT AMNOS M LIINALNT




(GHOTIOMNIGNT LAADDY AUL 0L SIMI0dy) ‘'t =04 = [ond

L6

SOIVAN CALTHOTIG CVIVA) O fOILANSVI 0 ‘HIVATIINVE)  NIDAT ¢ LLVATILOV

(xIdADDOVY) apa
COSVT MTLIVMy) aNam
SIONNTT 4+ [odAIvn + Asvs]s]s = [oiundit + NIJAnwmigale
HToandha + wrdammwngals =: [ond1iv) + goraaImnn s
CNAND WONT NOVT TAOUTM )
(ASVI ONTLIVME) NIOOT 48797
(xOTLTIVM SASYIL ONx) ana
CedOOT TIOMI LIYT N0 aA1DTTA8 ST NOSSTAIONd MIM Vx)  “31naAnsg
THIONATHOTIANAYA + IMNODT =: IMNNODT
AT = AIVLS TNOSSANONIINANNND ] MOSSAI0Nd
(2MOSSTDONd ASVATINR)
YQOCILNMNAND = [03sval + qoranaaunnl s
1 = [J4J401 + g9orihawwnn] s
t foaavg + goranINnD] <
AVIN = [odvan + sorinaminnl s
+
(

i}

aoriimmnn] <
2dATIS O 09x)

(xAIVY MAJOs) o= [OULVOR 4+ MIJARYNAA]S
(¥ONTLIVA SUCVI OMx) HINAS NANT 0 = [0anda 4+ ¥idavviaals a1
(OM1ITIVM SNOVI ANV SV AMINT STHIL 841 A7Sx)
TAZTSMIVMAANINAR (L = MAAVNT) 4+ [ + ORMIIHNT + OLINTINND = NIJMIVIIR
AUV AMTHA IS1 S NSV HIT O, MAINI0d VO ALNdROD:)

(x1 + ORMINT + ASYA IV SMNTOMNG FUWH] AWINA LSN1J 7]

AT CAWYNI MOVIS THI HT O IASAA0 RMING L M0T704 ATHLVIAnT
QUUYMIANTINT TVHTL HOTIAMASSY A0 HLIM HAIIINM SvH HOTIONMIANT STHILs:

(s # AINT 0 ‘143900Vy)  MIOAG ¢ L4300V

fxINASy)  ana
ENAL TN
(£NINTAN ADVDIIVY NLIM T0dx) ML | = 19AT7 A1
T (xM0Ax) aNA
Y1+ 0a = 0d
YL 01Iaave [ad13000) dH0) AL TIM
NTOAT 00 Naav OF | = T N0d
«ﬂ:;aqhz::<:qauz3en:auqu--quzauy:Hzm%vZuaua"y:mn

077
L77
977
G77
%77
LA
IAAA
177
nee
617
817
L7
917
Lz
VA XA
fle
il XA
117
nie
607
307
Lne
9207
SOz
02
£02
202
iyrd
007
661
}61
L6l
961
Gol

€6l
761
161

ONTLRTT IONNOS MALIAAIMTINT




- o ) ¥
v e R

a6

‘0 = [OLTVM + wIid1wL] S 99

1 = [09YTANSVI + WIAKAL] S 7

‘n = o140y + ;qngﬂd S %a7

CG:amoIng) o = [O¥N0VIVA + WIAEAL] S €97

(xA1T1%) ‘0 = Toun11 + Wi4dvrall s 797

(VYT OALSAN AATIOVe) 0 =: [OIHV + ¥1dB6AL] € 197

(£TUVIANIVIS AT PT Sa¥os TONINOD SAOANVITANSTIY AZTIVILINTIx) N9z
CeNOTINANISNT L 0 a¥OM VIVE LAVT N1 1SYd SIHICH MON Ddx) 1 + Dd =! 0d 6G?
(x(35070x) ‘0 =: [1] S 167

00 1AAT° [DA T000xAZTISALTOHI AN THA L57

+ OARNINT 4 NIJHAL O | + OXANINT + NI4MAL =: 1 303 967

FSATIINA 1TV AS0T10x) GG?

%67

(£SATHINT JO NAGHUNN # x)  71AA3°°104) 2000 =: [OXMINA + W14HAL] S 6T
(GNAIN IO MOVISx) Daave [Dd] 73a00 + MIAWAL =: [4401 + N14WAL] S rAYA
‘1 + 904 = D4 162

(AAINNOD HYADONdy) ‘yagv* [0d) Aa0d = [ond + WidWAlLl S 057

‘1 +0d =t 0d 6%2

(NOTIVZTIVILINT ¥Id dVANy)  uaav- [(0d1 900D + MI14AKAL =: [0dvAH + M14PAL] S 4%
(A8 x) INIAWAL = [0ASVE + ¥IAWAL] S YT

GATINOTNAR)  *TAAAT°I0d] 700D =: [ORLIHOTINd + WIAWAL) S 9%z
A«AZJ_ZJHnnc VNI DIVVNAQx)  SA8va =@ [OMNTTG + WALAWAL] S (%704
(xINAWNDISSY MNTT DIIVISx)  fAsvd  =: [OWNINS + MIAWAL] S VA TA

1% 74

(x ASVD MSVL QYOO &)  WIAKAL =: [0ASYAL + W14WAL) S e

'MOAQV NI + ASYE =@ NILAWAL (& A

(20AIVATIOV ONTAG MSYI ANL 40 ASvd ANl N1 NIAWAL, 1ASx) 0%z
(2OQAINTVIIONT ST Od HONOHT. NIAAY “HOTINADAXA S,NOTINNXIGNT 657

ANL TOAOHONOMHL NT HI NI SNIVPAN NOTIONWISHI ms<>uau< ANL ¢ ALONx) 8€T
(APVIANOVIS AHL AZTTIVILINTY) LE7

Ivada %7

GCe

(x1 + ONINT + 7SV VAN

IV SNIOAY VIS ANINA ISMIA Aul *J°1  *T'vid NOVIS AnL M1 e

IASAIA0 ANINA AHI MOTTI0A ATAIVIOTWHT STV AVINA IVIIL ROTIAPNSSY rARA
ANT, HLTH NALLINM SYM NOTIONALGNT STHI  * MILAMNSVI, 01 FATIVIAN l€C

TV T ANV AVAR CINANVE TREL 40 ASYS AL 05 AATIVIAN ST (MIINSVI,x) 0f2
(] ‘SADIINAL ‘viva) (o4 ‘0 ‘viva) 627

ONTILSTT ADANOS WHLANINIGINT




66

TTOMMTIT 4 WILAWALY S =@ Mydtmy,
0oa 0 O [OMNTIT + HI4ATAT]S a71He
(200D ANL BT NSYY LENTE ANl OJ NI4T 173S%) S IMI4AL)s =@ N141Ad.
CANAND ann 40 aNa aHL ap1ds)
(xAN3AND NT SSVIy) MI197AG ST
(307300 AHIL O NA1TIYD INTT) anrInaInd = rdpalls
(2ALAVA A0ANDx) NANL 0 = [MILIEAL]S a1
(£5NANG ANINT AN
JO avap ANl o5 SINIONA MOM NI4dRALx)  f0ANDIA + NIJUAWVIIT =@ W14l
TAZTISHVINAININTL (L = TAATT (D4 1FA0D)Y + | + OAWINT + ASYAJUAL =: ALJATWYIAN
(xANAND S, AWILNT dTTIVY AL 0L ¥TINIOS v AINdH0Ds)
‘0= [OANTT + gOrINIINND ]S
(x0TI INTT S,ATTIVD ONAZs)
(D07 VIVAx)  (ANANG ANINA SOASYI dAT1IVD AHL O 9A7119vD NITx)

MAaVENT 4+ (3SVE CTAIART) ASYAANTA =% (£SSTNAAY ALNTOSAV S MSVIx) ASVEINAL
CISVI A1V JHT A0 ASYE AL 904 SSANQAV AINTOSIY NV ALNJN0D
==INAIVA ANL A0 ASYE AUl 0F FATLVIAY ST ALANSVI, »)

(el + ORVINT + ASYY LV NINAG JISNK VNI ANIN]
JSHTS AHL AT CAPYARA NOVIS APL NI OXANINA MOTTI0A ATALVIAARKI
SAVYHL AMINT LVHIL HOTLAVNSSY AHT NLTIA NILLINM SYM TANAIIONd SINIx)

GeSATHINAS "#ANLHT "vIva)  f(MIIYSVI ‘4410 XIT ‘ANINAIIVIR)  NI9Ag : ANINATIY)

T(ALVATLOVY)  (NT

(2143778 O 09%)  “ATNATHUNS

(xS3ANAND MDOTINNy)

TATVAILOV <O d0O°¥T 11N
1 4+ 0d = Dd NIAHL ALVAILOV = 40°¥1 A1
{nd] Pa0n = A7
CCIORILTHOING + WIAUAL] § “UIARAL) MNINaING

1+ [0IMv + agvyal § =: [OINV + Asva] <
CTOTIOMILSNT STHI SALADAXI THAUVL P ATON
== THMIVA AL 40 NAITHNN0D MSYI GALSAN AATIOV ANL THAWINONIx)

¢ o= [omanray + N14ray) S
00 o= [onavn + W1awarl s

07
f.0f.
20f
LNE
00¢
667
367
L67
962
G63T
Y62
£62Z
ch?
167
067
632
087
L]
97
6932
%87
o7
Pt ¥A
182
087
612
i
LLe
9217
Y ird
VIx4
eLe
IAX4
112
0Lz
692
292
197

ONTLSTT OO¥N0S MULINIATINT




R c— S e e e A b B e e ————

0nt

arv (o = foiny + y»ainm1l g) a1

1= [oIny + N1draL] & =& [oINv + A1d1AL) o

(xAVWIF NSV &, INMYd L O NLAWATL 132Sx)  C(asva ‘1) AsvqaaNTd = MNTAETT,
(x0° 0 AIVHTINGIR)  NTOHAT  ALVMTENAL

T(xASVATMY) ary
(SN0 VIVA  §2 M0SSIADONA AN AT %)

FNa300

CCTOALTINOTHA 4+ H4LAWALIS “MLAWAL) OMTYAINA

TONATTIVD + A0CTHANNNN] S =! WLAWAL

(£AVRINSYL S, NSV ONTTIVD AL A0 ASYE T0L 0L NAINIO AT TAT ITNILANK)
(x #XNINT 0 “ASYITING)  NINAT ¢ ASYATIN

P(ANINT 1IVIR)  ana
(D07 VIVAx) 37naMns

CHIONTINOTINDAXT + THNODT = INNODY
707 =! AIVIS® [AOSSANONLINTIAND ] NOSSADIONG
(sMOSSIAIONG ASYIITAINY)

1 o= {3301 + goranNaNdnn) s
facvg =: [0d8vR + gorinaann} s
Lgvan =: [odvan + goraNamnnl s

Pr]

1 +0d = [0Dd + A0CINANNAN]
(AVVINSYT S NATIVD MT SHALSTOM |, aNIHOVI ANT AAVS -- dA7A1S O\ 09x)
‘ana
HTOALTIOM + ASYAAPILIS ‘AsSvaqaIl) OLINAINA
C(xITTHME) ONT
TAZISAIVNARNING + T =0 1
(x350T0%) ‘0 = {odHIVDa + 1} S
NIOAT 00 AZTISTATTAININT & 1aav: (0413000 + 0AMINT + FSVAJNAL => T ATTHM
1 4+ OAYINT 4 ASVAAWAL =: 1
(£NAA0 XNINAL) NIOHAT NApL | = [03IvHT + Nlddvngal s ar
(xNAd0 ST ANINT SISV AF71¥) IHL 41 339 05 J¥07A10x)
TANIAND 1T SAWIy) anz
(220700 OF. WHIVD M Tx)  '90CIHIINND = [OMNTT 4+ MLAWALY S
(xA0ANAD NT VSV ISVT A1 01 SINT0d NI1dWALx)

<

MILETT

IINOT MATANANTIINT

pAVAS
1849
oyt
66
tH 33
LES
9ife
GLe
AR
£ee
AR
Lee
oce
67¢
97¢
L7e
9zt
YA
7€
1XA?
e
17.¢€
0ze
6Lt
8te
Lie
91¢€
Gie
VALY
£ig
A3
e
otf
60t
30¢
LOf
20¢
60t

Rz Aty




tny
1513 nafs
(any1) oue =: [11« 6L S
w7 o= f1le a1 e
L+ LIS + qﬁ_n =: [1l¢ L
-1 o=t ] 9%
HINAN : ANY?  G/T
_ LS
MOV T Ty)  anam L€
S(xAMNOA JT AAOFTIN ANV SANAND AAVAM ANT BT NOOTy) YA
4877 YA
(xahnody) ana 0Ls
INAANDS 69¢
D o= SOrINTNAND® [MIAANL] 10eeun0Nd a9¢
70T =% AIVIS [ALAFAL] Wossanodd L9¢€
(xd0IS 0L NOSSADOAd VIALx) 99¢
[oaby + 11S =: [oINV + 11 S Gof.
TOIQaveET L) Aacveaniq = 1 %9f
(xINVVA JO ¥ATHNAND TNV INAANDUAAY) £.9¢
(2MN0Ax) MTIHAST HANTL 0 <> MLAAL AT <9t
£ = W14Vl 19¢
NAHYL ASVAJWAL = A0CTHANHND [T] ¥OSSANONd 41 09¢.
00 SMOSSADONAINN O 1 =: T 30d 66G¢
0 = MLAWAL G¢
(x077T71IX A9 OLNSYI NI ONTINDAYT MOSSANONd AHI aANTdx) (LGS
NAAVANT + (ASVE CTIATT) ASVAANTS =@ (£SSaN0av ALMNT0S9V S, 3%V Tx) ASVaarmL 9G¢
(AWYNAWIVIS S, ASVT QATIVY AHLI M0I SOV ALATOSAIVY NV AINdW0Dx) GGt
(xexx QRLSAL MNAAG LON SYH NOTLIONWISNT STINY @ AJOH yex) vidy
(ALANSYI ‘0 ASVITIIIR)  NTOAT ¢ NSYITTIY  €6E
A%
mﬁ«uy<zafxaa¥v an? 1G€

fAINAARDS 1193
THIOSNAIROLIANAXT 4+ INAODT =1 IMNODT 6%¢
AT = ALVLS [MOSKSADORIINIRAND ] MOSSIADONd e

(x3717S ALYNTINATLL) LYt

9%¢

C(IORITHOTA + MIAEAL]S “NI40AL) ONINTILNT 419

(xINTAV N ANVMy) 4¢

(xAIVHTINMAL OF, ONTLIVM I0AVds)  PIHTL (1 = [OLIVM 4+ ¥ITARAL] <) £ye

ORTLSTT ADANOR NALANANAIN]




7ol
oLy
(%SAAAY. INFPAONY IMANTIATG 104 AIT1A0K ‘ot L1y
[t 4+ 118 2 [L1S =t (218 ‘1 = 1 =2 1 ®©1079 @ MNOdVIL) 91%
Ciy
tana vy
(Tt + 11 = (113 ann =: [1]s ¢y - 1 = 1 HI199 : Ivad3a €1y
71y
t A o e IR L
iy
X TATHSUVAVEY) arT 60%
TC1-1) - (gavewi-nis =: [(1-1) - 119 0%
00 1IAAT°NT 05 | = T 903 LO%

AV NT + 1 = 90%
CRIMAVANANL =T “SANOM J0 §F ‘LAINSIVIVILY  NINAg 1ITNSHYNVYA 0%

H0%y

‘an3 oYy

qaay =: dd L + I =7 Asvy rAtL;

g = [oNwnLAY + | + 118 L0Y

0 = [OXNINT + | + 11S ony

0 = [oNnovIvd + | + 1]S 66

‘N = [0X1d7DXT + | + 1]S Q6E

‘0 = [owa1vd + | + 1]S L6F

(x¥13x) ‘G =: [OALTNOTNI 4+ | + 11S LTS
o = [OWNTT + | + 1]S G6°

0 = [4301 + | + 1]S Y6¢

o =: [oAcval + t + 11S €6f

‘o =: foasva + { + 118 26¢%

o = [odvan + | + 1l]S 16§

‘0 = [OJIVM + | + 11S 06§

‘n = [OINV + | + 1]¢ (3:19

(xASTVIxY 0 =: [OOVIANSVI + t + 1]S Q9
‘0= i + 00d + 1] L8€

fagvg = [ + oWTIa + 118 98¢

CAQVYT CTAATTY ACVAANTI =1 {1 + OWNTIR + LIS G8f
NIONAT : VIVD 49

£

' (x(ANVYx) aNF 78f

(aeva) ano = [11s 19f,

ONTIRTT ANAOS AT LANANIINT




tr103q ¢ JAUr 9GY

Gh
rang HGYy
t -1 = 1 £6y
Naay =: ng vt o = {11 9 31 75
prIoAe f adur 1%y
NGy
NAAY =3 DA JWBC GYY
amy
]aav + I = 1 IONT (%Y
9%y
f(¥NIXx) ana GChy
(ASIVA) awe =: [1]s vy
1919 9y
Gy avo =2 [1)s ohYy
pany ({7 + 11s=> [1]S) ahv ([t + 11s =¢ {1]%) Ja71 L%
T -1 =1 nYy
PINIAN : NI7  GEW
ey
‘ana LY
ft + 318 - f1ls = [1]S ‘1 -1 =1 NTIOAA ¢ 40<T om¢
GEY
'T1is- =: [1ls DOALVINT 46y
ey
‘opa rA%
1+ 318 « {118 =2 T31S ' =1 = 1 NINT : ITNWT 16y
nfey
‘arq 6CY
[t + 315 A10 11 = [13]Ss ‘1 - 5 =t 1 NIDRO : AIQT Q7Y%
(7Y
‘and 97y
[t + 118 + T1le =: [1]S ‘t -1 =: 1 NIDAT : 0OV GZY
wTy
Hy K (XA
(U + 118 =¢ T118) aun =% (11 ! =~ 1 =3 1 NIDAN : DIMIN 779
12
‘arA YA

(T 4+ 115 ¢ 11)S) aWo =: (118 f | - 1 =: J NINAG : NIH 6Ly

MIIITT AMINOS NATINANAINT

E .




LR TRy e Y T . — . - ” - - -

—— i e

201
‘ana Y6y
Mt + 11s aor (118 = [1]S ‘1 = 1 =: 1 nNIDAT : aow1 €6Yy
rdsy;
C(xQIVAN AINTIAAx)  ISHODAYOT  16%
n6Y
tana 69%
Naav =: [11s 'L + I = I NTI9I8 : ISHONAVOTI 8R]%
L%
C(xTIOLSTINAK) and 99y
1 -1 = 1 42
[1]1S =: [vaav a1 + WIIKALIS 92y
19301 + WIAWALIS = WI4KAlL €3y
CIIVELS SOV ANL J0 40T AN O AXAPAL JASx) rAtd
C(oMATITIYD + gorINIINN ]S = MI4dWAL 129
(2ADLANSYI S, M0V AHL 40 ASVE AHL O ¥ILJdWAJ 1ASy) 02y
NIDZAE : MOLSTINA  6LY
QUY
C(xQVOTTINAx)  ONT LLYy
'[Haave eI + Nidararls = [11< Y
'L+ 1 =1 GLYy
11401 + WI4HAL] S =: MI4WAL VI
(MOVIS §,9A71Y0 AL 40 d0J AHIL OJ WIJFAL LASx) €LY
CTONATTIVY + FOLINTINNDY S =: WIJWAL 'Y
(£AVEDISYI. S, NATIV) 40 ASYE AHL 0 “IAWAL 13ASx) WA/
NIDAG  : AVOITINI  OLY
6oy
Hdk| 9%y
[vaav + (3ASva 13AAT) ASvaantd] s =: [11S ‘1L + I = 1 NID3AA * avoll %Qq
9%
H k! S9Y
(f1 + 118 = [118) awo =2 [11s 1 = 1 = J NIOIG : DASSAT %9%
£y
‘an3 9%
(fL + I1s > [118) ano =: [J11s 1t = 1 = J NTOAR : SSAT  19%
n9v
‘ana 6SY
1 ~ 1 =1 aG6Y
Naav =: od vang o = [1]1 s a1 LS

IMNILRIT ADAN0S MATLIMAANNINT




601
dne
e S A R I s
ngs
IVINGT INTOd OPTIVOTNS AN14730x) ¢ IO 676
876
C(RNUNTANL) ari IXAS
(2] IVMy) aN3 975
Ehaislilcieitiels Gz¢g
THIONTINOTILONAXA + INAODT =: THNODT %76
A1 = ALVIS* [90SSIN0NAINANIND ] W0SSAN0Ng €7
(xd73718 O 09%) [AAS
o=t fad01 + Asva] S A
tAgvg =: [0ASvg + Asva] o 076
'dvan =: [odvan + Asva] < 616
I - 0d = [ong + asval S 816
(:NOTIONNISMNT NYNLAYN AHI O JOvVE 24 1A%x) LIS
1 = [OLIVM + Asve]) S 216
(2513 ONTLIVM INANVA 1ASx) G116
(xATATAN0N O (SINSVI ¥0d JIVMx) NIODAT ASTH 716
(xTATIOV MONy) aNA €16
‘TOYNTIQ + ASYA) § =: ASYR 716
flomanyan + Asval S =: Nd 116
' - ASVE =: [ 0146
(xAATIOV ANONx) NIDIAG NINIL 0 = [OINV + asve) S A1 606
(£SSVI FISAN AATIOV ANV ANV INAHL AT A1Sx) 206
NIDAR : NANIAN  L0S
906
C(xANTINOM ALIWMx) : WINT  60G
%06
P(2IVINOA INIONA ONTIVOLI ANIAFAx) * AIGY €06
7206
CORNVIE ANT NT T119%) : AsSIV 106
00¢g
C(RIVIMOS INIOd ONTIVOTY ANTIAGy) © aavy  66Y
anm R6Y
(O + [11s O M1s) a0 =: [11s 1 =1 = 1 NI : DILON L6y
96Y
GAY

ONTLSTIT ADANOS NAIIMHAINT




NS

TONOYTRY  anm 696

(Aevy) aie = [11s nag

4579 196

(anL)Ymio =: [1ls 996

M o= {118 471 696

Ty + 119 4+ (118 = [1]sS %79G
L~ 1 =) €16

MIORE : NOX7Z 796

196

T(xNOZx)  ana nag

A1) ano =: [1]s 655

1817 66

(As1vd) awo =: [11s LSS

MapL o0 = (118 41 966

T+ 118 + [1)1s =% [1ls GGG
-1 =1 9GG

NINAT NO7Z  £.6S

rA%

f(xION7Zx)  ana 166

(ava) avo =: [11s 0nsg

1813 6%¢6

(A1) awo =: [118 tL1d

NAHTL 0 = {118 a1 %S

NTIDAF : ION7 946

919

‘anq 7%9¢

(Aav avan) amaN =: 115 ‘1 + 1 =: 1 NTIOAA : MAN7Z €46
ons

‘ana %S

1 -1 =1 oS

f(T11S) NIAYTHM 6£6

HAWY [ANOLSANVNI] HALIMS J1 €S
IS =: [Maav + (Asvqg TIATT)ASVAANTIIS] S LES
MIDAT : FWOLST 976

GfG

ViR

(x e Pognsy ¢t

OMTILSTT ADANOS MALINANAINT




C(xJARINAINIx) aN3F
(xNOTIVNTIWMAL JON 3T1IHMx) AN
(x10d74Sy) aN3I
0 =: INNODTI® [¥0SSANOWAINIYYND] WOSSADONd
: 3S1H
(x1909V ¥0¥¥3x) AN3I
(,317a1 SYOSSAD0¥d TV -- IFAJIIINT NI HNIJ0OT ,) NTILTEM
AMNL =@ NOTIVNIWNAL
(x1909V HO¥NAx) NIDAEZ NIHI SYOSSIDOVIWNN < 1 J1
C(x371NMy) aNA
m—+H"nH
f{ + SHOSSADONAWNN AOW JYOSSADOAJINANNNAD =: VOSSADOIJINANIND
NI939 0a (SHOSSHIOUIRAN => 1)
A aNV (3141 = FIVIS® (FOSSADOAIINTINND ] ¥OSSIN0Nd) FATIHM
{ ‘0 =1
W ‘1 + SYOSSADONIWNN GOW JOSSADOHAILNIWAND =1 YOSSADOUIILNARAND
R (¢90SK]AD0Ud IYXAN FUI, IDATASx) NIDd9 3STH
) AL = NOILVNIWNIL
(=A1ATIN0D NOTLANAXAx) NAHL 0 = DJ° [H0SSADONJININAND] ¥0SSIDI0Hd JI
CCRIOMAINDILANAXA =< INNODT) ¥0 (0 = Dd) TIINN
(xASVOx) aN3

166
065
686
886§
L8S
985S
S8s
%86
£8¢S
786
1539
086
616
8L6
L1S
L TAS
S¢(S
L6
€Ls
LS
¥4

ONILSIT 3AD¥N0S WALAMANALNT



VITA

VITA

Alan K. Garlington was born on 20 August 1951 in
Chicopee, dassachusetts to Arthur R. Garlington, Jr. and
Claire Y. (Cournoyer) Garlington. He attended nizh school
at Rome Free aAcademy in Kome, New York and ,raduated in
1969. In June of that year, he entered tne USAF Academy in
Colorade Springs, Colorado and subsequently jraduated w~ith a
Bachelor of Science Dejree in Electrical Engineerin, in June
of 1973. His first Air Force active duty assiznment was to
Under _raduate Navigation [raining at dataer ArFB  in
Sacramento California. He ,raduated in April of 1974 and
entered itlectronic Warfare Training, also at ather. Upon
oraduation from Electronic Warfare Training in October o
1974, he was assigned to the 62nd Bombardment squadron, 2ad
Bomb Wing (SAC), at Barksdale AFB, Louisiana. In March 1973
ne was assigned duties as win, electronic warfare oflicer
where he served until entering the Air Force Iastitute of
Technolo,y School of Engineering at Wright Patterson arB,
Ohio in Sept 1979. He is a member of Tau Beta Pi and Eta

Kappa lu.

Capt Garlington was married on 29 December 1973 in
Rome, ilew York to Pasyualina J. viidarco. They have one son,

Christopher alan, who was born on 12 September 1979.

Permanent address: 06623 Williams Koad
Rome, New York 13440

108




SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
T, REPORT NUMBER T2 GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFIT/GCS/MA/81M-1 "/ . S !

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOCD COVERED

PRELIMINARY DESIGN AND IMPLEMENTATION MS THESIS

6. PERFORMING OG. REPORT NUMBER

OF AN ADA PSEUDO-MACHINE

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Alan R. Garlington
. CAPT, USAF

9. PERFORMING ORGANIZATION NAME AND ADDRESS

0. PROGRAM ELEMENT PROJECT, TASK i
AREA & WORK UNIT NUMBERS :

Department of Mathematics

AFIT/EN
1t. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
March 81 /
13. NUMBER OF PAGES cf
118

14, MONITORING AGENCY NAME & ADDRESS(If different from Controlling Oftice) 15. SECURITY CLASS. (of this report)

1Sa. ECL DA SIFICAT!ON/ DOWNGRADING *
CHE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstrect entered in Block 20, it cifferent from Report)

r 18. SUPPLEMENTARY NOTES A\' . C
Fo APPROVED FOR FLRLIT RELCASE AFR 190-17anedwae
&« ! Alr Force institute of Technolczy {ATC) FREDRIC C. LYNC ajor, USA!‘ '
i Wright-Patterson AFB, OH 43433 Dizeclor of Public Aftairs »
19. KEY WORODS (Continue on reverse side if necessary and identify by block number) )
Ada Pseudo-machine ;
Compilers ’
Computer Programs [ ]
T Microcomputers
Minicomputers

— 1

20. A!STRACT {Continue on reverss side {f necesesary and identily by block number)

Th1s project involved defining an Ada pseudo-machxne and developing an |
Ada to pseudo-code test translator. The translator's front end incorporates '
a table-driven parser that can parse the entire proposed-standard Ada language.
The translator's semantic routines allow integer data objects, several control
structures, procedures, functions, packages and tasks. These routines generate
pseudo~code that is executed by an interpreter program included in the
translator. The interpreter constitutes a complete description of the pseud -~

DD |:2:l’" ]473 EDITION OF ! NOV 55 IS OBSOLETE '

SECURITY CLASSIFICATION OF THIS PAGE /When Dats Entered)




SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

BLOCK 20 continued:

machine whose architecture consists of multiple, stack-oriented processors
that access a common memory. Interesting features of the project include
the hash~coded symbol table that supports Ada's visibility rules and the
pseudo-machine architecture that supports Ada's tasking.

~

SECURITY CLASSIFICATION OF Tu- ASE #hen Date Er







